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ABSTRACT

Graphed curves of the sigmoid- or bell-
shaped classes can be scaled to and
compared with the wide array of stand-
ard curves presented in this paper. If
a standard can be found that suitably
matches the graphed curve, the algebraic
form specified for the standard can be
fitted to any relevant data set by least
squares. The algebraic forms utilized
are all ratios of exponential functions.



INTRODUCTION

The analyst often graphically initiates a two-dimensional regression analysis, hand-
fitting the expected form of an XY relation through a set of plotted data points.

Assume he wants next to find an algebraic transformllof the independent .variable X,
such that transformed X values fitted to their corresponding Y values by least squares
emulate the graphed form with acceptable accuracy. If the graphed form is linear, no
search is required since the appropriate form is X itself. For curvilinear forms,
however, this effort can be difficult and time consuming.

In this paper we have attempted to reduce the search effort required to find accept-
able curves of the sigmoid- and bell-shaped classes. The analyst simply matches a
scaled version of his graphed curve with graphed standards or curves (pages 11-22),
and selects the two adjacent ones most like his own in shape. Interpolation between
the transforms given for each standard results in identification of the best alternative
offered by the system. It is this transform that finally is fitted to the data set by

least squares.
AN EXAMPLE

Let's say that an analyst wants to generate a least squares-fit estimating equation
for Y from the data set plotted in figure 1. From previous knowledge of the relation
between X and Y, he expects the curve to be sigmoid upward with larger X values until a
peak is reached, then sigmoid downward. The apparent data trend supports his expec-
tation and he hand-fits such a curve through the data as shown in figure 1.
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Figure 1.--Here, the
expected curve form 1000 {--—=-=—=—====—————- Ypem—mmmmmmemam s
has been hand-fitted
through plotted
data points. Plus 800 -
and minus departures
are balanced
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Defined here as any nonlinear mathematical form of a variable.
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Pigure 3.--The standards best matched to the original curve bracket the overlay curve.
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Pigure 2.--Here, the graphed curve has been scaled to the standards.
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Next, to find a suitable X transform to describe this curve, he would work with the
left sigmoid portion (0=X=150) and hold to the following procedure. He would:

l.--Determine XY values at the peak of the curve, Xp and Yp respectively in
figure 1.

2.--Divide Xp into 10 equal partsfyas shown below and determine from the curve
the Y value at each of the 11 resulting X values.

Original data

X 0 15 30 45 60 75 80 165 220 o 155 150

Y 0 0 0 15 40 | 100 | 220 | 430| 700 | 910 | 1,000

3.--Let the array of X values be called X; and the array of Y values, Y, .

i Then
scale the X; to X/Xp and the Y; to Y/Yp.

Sealed data

X/150 0.00|0.10 | 0.20| 0.30| 0.40| 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00

Y/1,000 | 0.00 | 0.00 | 0.00| 0.02| 0.04| 0.10 [ 0.22 | 0.43 | 0.70 | 0.91 1.00

4.--Plot these points_?n a sheet of graph paper (10 by 10 to the 1/2 inch)
at the same scale® used for the standards (5 inches for the Yp range and
1/2 inch per 1/10 unit of Y, 7-1/2 inches for the Xp range and 3/4 inch per
1/10 unit of X).

5.--Draw a smooth curve through the plotted points as in figure 2.

6.--Use this curve as an overlay for any one of the standards, being careful to
match exactly the X and Y axes of the overlay with those of each standard
examinif, and find adjoining standards shaped most nearly like the overlay
curve.¥ In this case, the standards X;/Xp = 0.6 and 0.7 in the set n = 2,0
(fig. 3) bracket the overlay curve nicely. Note that there is a set of nine
standards on each of the 10 graphs. Variations in curve shapes between
graphs are attributable to differences in the exponent #. Variations within
graphs are attributable to differences in the inflection point X; of each
curve, scaled to the standards as X;/Xp in the family of curves:

-T -T,
- 0
Y/Yp = = f;
1-¢ 0
2/ x oy ;
g,Use fewer parts where the desired sensitivity is less. .

This odd scale was necessitated by publication limitations in paper size.

A light source behind the graphs to be compared will assist in the matching
process.
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where:

e = natural log base, 2.71828
(X/Xp) - 1 |7
i IWT*T
To = T, evaluated at X = 0; then (X/Xp) = 0
X/Xp = the scaled X-values, 0 to 1.0
X;/Xp= the scaled inflection point when 0< Xy /Xp<1

Having found an acceptabie pair of adjoining standards that bracket the overlay
curve, the analyst can interpolate between the scaled inflection points represented by
the two and arrive at the final X transform. He can use proportional horizontal depar-
ture of the overlay curve from the left bracketing standard at Y/Yp = 0.5 as the basis
for interpolation. In figure 3, the overlay curve lies at about the 70 percent poi?}
between the scaled inflection points 0.6 and 0.7; so the interpolated X;/Xp = 0.67.2

Then:
2.0

_|x/150) - 1
0.67 - 1

and the X transform finally adopted will be

_| (x/1s0) - 1 J*° _‘ o= 1 P°
0.33 e 1033 |
Y/YP s 2.0
. Q=1
0.33
l-e€
This can be simplified to:
_ hxhﬁm Y
0.1089 -g—9-18
-9.18
s e
But, from standard tables of e, e <0.0002 and, in this case, the expression

can be further simplified to:

o |[xflsoJ - 1|2'o

Y/Yp = e 0.1088

5fThis same interpolating principle can be used between standards of different sets
for refined n estimates, but this operation is not recommended for general application.
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i Since Y/Yp is only a scaling change for Y, we can substitute Y for Y/Yp in the
final sample linear model to be fitted by least squares as shown immediately below.

2.0

| (x/280) - 1]
Y = ﬁu e 31 e 0.1089

Then the estimated 85, B, (ﬁo, ﬁlj, will adjust for the scalar differences.

With the aid of a desk calculator and e or logarithm tables, the X transform
required for each X value_}n the data set can be obtained and the least squares fitting
process applied as usual.? It is preferable, however, if not necessary, to use a
computer to arrive at the fitted model, in this case

_ |(x/180) - 1 | 2R

0.1089

Y = -2.05 + 998.7 e

Points from the fitted model are compared to the original graphed form in figure 4.

It is clear that plotted points from the fitted model are an excellent match for
the original graphed curve form within the data range of X.

Ehhe hand calculations for this fitting process, although not recommended, are
shown on pages 9 and 10.



ALTERNATIVE ARRANGEMENTS OF ANALYST'S CURVES IN TWO - DIMENSIONAL SPACE

Alternative spacial arrangements generate a need for ﬁiviations-»generally minor--
from some of the procedures listed in the matching proc9557 just presented. We have
attempted to cover the most common of these alternatives in the discussion that follows.

Altermative 1. Intercepts other than zero:

A B

<

Here, the sigmoid curvature never drops below the intercept a, regardless of
whether ¢ is positive or negative. To apply Matchacurve, substitute (Y-a) for Y.

Using the data from figure 1 with an intercept = +20, the curve would be as
pictured in A of Alternative 1, and the actual Y values would be as tabulated below.

X 0 ; 15 30 | 451 60 | 75| 90 | 105 |120 | 135 150

Y 20 | 20 |20 | 35 | 60 |120 |240 | 450 | 720 | 930 | 1,020

Y-a| 0 0 0 15 | 40 [100 | 220 | 430 700 | 910 1,000

The X; and associated (Y-a) values would be those used to identify the mathematical
form in Matchacurve using the procedures already described. Having identified an
appropriate X transform, the analyst fits it through the original Y values by least
squares as before, then the estimated intercept, B, should be close to 20.

Given an intercept = -20, add 20 to each Y value and proceed with Matchacurve as
before (see B of Alternative 1).

Zhhis process will be referred to henceforth as ''Matchacurve.'




Alternative 2. X = 0 included in the range of X when Y >0:
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Substitute (X - Xg) for X. Apply Matchacurve as before.

Alternative 3. Right half of bell-shaped curve specified by analyst:

0 Xp

Plot the mirror image of the right side on the left as shown above and apply
Matchacurve as before.

Alternative 4. Incomplete sigmoids specified:
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If Xp, Yp, and the intercept a are not present in the curve specified by the
analyst, they must be estimated. Then, Matchacurve can be applied as before.



Alternative 5. Inverted bell-shaped curve, or portion thereof:

Plot the negative departures of the curve from the intercept as positive departures
on the intercept, i.e., rotate the curve upward about a. Apply Matchacurve as before,
fitting the X transform selected to the original Y values. @, should be close to a
and §,; should be negative.

MISCELLANEOUS NOTES ON MATCHACURVE

° There will be cases where the X transform determined from Matchacurve is not
sufficiently accurate to suit the analyst's purposes. In such cases, curve
form description procedures beyond the scope of this paper must be used.

e The alternative of using a completely automated X-transform selection system
from the Matchacurve family of curves was considered. Such a system was bypassed
in favor of the graphic comparison technique, which minimizes constraints on
curve selection criteria and is still relatively fast to use. It is important
to note that selection criteria vary with analysts, analytical objectives, and
data characteristics. Our inability even to define applicable criteria commonly
used (aside from least squares) discouraged the adoption of complete automa-
tion here.

\

e The portion of the curve to the right of Xp is a mirror image of the left in
the Matchacurve transforms. Once » and the scaled inflection point Xj/X, have
been selected and held constant, changes in Y values depend only on departure
of X/Xp from 1.0. Equal departures on opposite sides of 1.0 will result in
equal Y values. Since it is assumed that the analyst's curve is bell-shaped
(symmetrical), we really need only identify the X transform for one side (left),
as in figure 1.

Every Matchacurve X transform is forced to zero at X = 0 and at X = 2Xp and
should only be used within these limits.

e For those readers who would like to follow the development of the family of
curves presented:

a. At X =0, e has the value 1 and drops sigmoidally with increasing X values,
eventually approaching zero and becoming asymptotic to the X axis.




e The

For conceptual convenience, the right-hand, mirror image of e*, 1-¢e%,

is next adopted. This function then is zero at X = O and increases sigmoid-
ally approaching the value 1 and becoming asymptotic to 1 at larger values
of X.

But with Xp fixed close to the minimum X (where Y =a) and 0<X<Xp, some
1 - T values where

n
S d h ini X
= —_— e i » 0 at the minimum A,
T (XI/XP) = will exceed zer

To maintain the property in 1 - &T that all functions of this family pass
through the origin, all differences between 1 and 1 - €T are expanded to

1 and finally are subtracted from 1, or

1 - ¢eTo

. : : T _ T
T 1 @ - e_T ) e e

1 -e 1 -¢

To

standards that follow have been drawn by an electronic plotter operating on

computer-generated data points for the Matchacurve X transforms. In a few
instances, sharp curvature is represented by a series of short, straight lines

and is the result of adopting an intermediate plotting interval, 0.075 inch, for
the X scale. These minor imperfections in the standards are judged to be
unimportant in Matchacurve applications.
@ Hand calculations for the least squares fit of the X transform, e’T, shown
on page 4 are tabulated below.
2*
Observation  Original data r = Jx/150) - 1 ; *ox
number X Y X/150 ~70.1089 X'= et
1 75 220 0.5 2.30 0.100
2 90 100 .6 1.47 .230
3 105 300 o7 .83 .436
4 105 560 ST .83 .436
5 120 700 .8 ST .691
6 135 750 .9 .09 .914
7 150 1,150 150 .00 1.000
8 165 900 Tkt | .09 .914
9 180 800 1.2 .37 .691
10 180 600 15,2 BT .691
z 6,080 6.103
MEAN 608 0.6103

*Rounded to hundredths.
**Values from tables of e X.



Continuing the computations:

] L
(X )2 4.546327 =X Y = 4529.160

$(x)2 = zx)2 - ((2X)2/n) = 4.546327 - ((6.103)2/10) = 0.8216661

' 1
ZXY - (ZX ZY/n)

IX y = = 4529.160 - ((6080)(6.103)/10) = 818.536
8, = 818.536/0.8216661 = 996.19
e P
By =Y - 8;X = 608 - 996.19(0.6103) = 0.0252 .
i
and ll
A 1
Y = 0.03 + 996.2 X
Note that the desk calculator solution, wherein fewer significant digits were
carried, resulted in slightly different constants than the more exacting computer
solution given earlier where f = -2.05 and g, = 998.7.
R
'}
.
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ABOUT THE FOREST SERVICE . ..

As our Nation grows, people expect and need more from their forests—more
wood; more water, fish, and wildlife; more recreation and natural beauty; more
special forest products and forage. The Forest Service of the U. S. Department
of Agriculture helps to fulfill these expectations and needs through three major
activities:

® Conducting forest and range research at over
75 locations ranging from Puerto Rico te
Alaska to Hawaii.

® Participating with all State Forestry agen-
cies in cooperative programs to protect, im-
prove, and wisely use our Country’s 395
million acres of State, local, and private
forest lands.

® Managing and protecting the 187-million
acre National Forest System.

The Forest Service does this by encouraging use of the new knowledge
that research scientists develop; by setting an example in managing, under
sustained yield, the National Forests and Grasslands for multiple use purposes;
and by cooperating with all States and with private citizens in their efforts to
achieve better management, protection, and use of forest resources.

Traditionally, Forest Service people have been active members of the com-
munities and towns in which they live and work. They strive to secure for all,
continuous benefits from the Country’s forest resources.

For more than 60 years, the Forest Service has been serving the Nation as a
leading natural resource conservation agency.






