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ABSTRACT

Mathematical model development procedures for graphed
relations between variables are presented. As an extension
of single-component two-dimensional model alternatives given
in the two previous papers of the Matchacurve series, the
author concentrates on multiple-component and multidimen-
sional modeling. These procedures are particularly useful in
describing unique main effects and interactions. A detailed
application is given for a heavily convolute surface developed
from "live' data.
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INTRODUCTION

Phenomenal development of computer capability almost everywhere has sparked a
surge in the use of mathematical models. Their use varies from the relatively brief
statistical evaluation of model performance on new data sets to the automation of
repeated model estimates as inputs to extensive compilation processes,

Of primary concern in this paper is the development of such models from a specific
source, namely, graphed relations between continuous variables. The graphs may have
been generated from theory, experience, graphic analysis of data, or from some combina-
tion of these. But, whatever the source, it is assumed that the graphs are at hand and
that mathematical expressions for these relationships are required by the analyst,

We limit our task to finding transformations of the independent variables that,
when scaled to the graphed relation, emulate the latter with a degree of accuracy
satisfactory to the analyst,

Hoerl (1954) assembled a broad array of mathematical curve-form alternatives and
presented numerous examples graphed to a relatively constant scale. Those conforming
generally to the data trends (or curves from any other source) to be emulated could be
fitted to the data (e.g., by least squares) or simply scaled to any graph. Performance
could then be evaluated by the analyst and the best alternative adopted. Bartlett
(1947) and Draper and Hunter (1969) recognized the necessity for allowing the analyst
to make this judgment based on his own acceptance criteria. Isolated families of math-
ematical forms were discussed by Dolby (1963), Box and Tidwell (1962), and by Draper and
Hunter (1969),

After considering these and other relevant publications on transformation, addi-
tional systemization of curve-selection processes seems in order. Moreover, it is
felt that we should implement new efforts to bridge the communication gap between
the practicing analyst and the more mathematically erudite transformation architect.
Tukey and Wilk (1965) may have had such efforts in mind when they wrote: "As in the past,
much, perhaps most, of even carefully collected data will not be completely analyzed.
In part, this is because ... the technology of data analysis is still unsystematized
and many of those who could put its tools to good use are unable to do so effectively."

Also, publications to date dwell heavily on the two-dimensional aspects of curve-
form description; they place little emphasis on the details of specific approaches to
the isolation and description of interactions in three or more dimensional relations.
Such interactions are implicit in the majority of relations for the multitude of dis-
ciplines we encounter in Forest Service research.

Researchers have expressed a need for modeling techniques that are sensitive to
unique main effects and interactions, techniques that can be applied by the scientist
group in general. In response, we have elected to work with two fairly flexible fami-
lies of mathematical forms (Jensen and Homeyer 1970, 1971). Curve-form selection from
these sources has been systematized for two-dimensional relations. In this paper, the
additional descriptive capability of multiple-component mathematical forms is demon-
strated and an approach to descriptor development for three or more dimensional relations
detailed.



We are concerned primarily with the mathematical description of established graphic
relationships. However, it seems advisable to begin by putting the whole modeling
system (graphic-plus mathematical development) in analytical perspective, particularly
where the graphed model is developed from data.

Here, guided by constraints known to exist in the relationship being modeled,
unique main effects and interactions visible in the data can be drawn with interpretive
freedom and few mathematical obstacles. Effects that cannot be identified in the data,
are negligible in a practical sense, or are inconsistent with expectation, can be
deleted. The graphic model thus derived can be described mathematically and fitted as
a unit to original or new data sets by least squares. Finally, the fitted model can
be evaluated statistically for performance.

At the graphing stage, shapes and scales for the effects of variables are not
likely to be developed with mathematically rigorous attention to the fitting process.
This is a potential source of bias and/or information loss. Ultimately, of course,

a complex form-development problem is fraught with similar difficulties in any other
modeling system. The solutions are generally heavily assumptive.

As visualized here, the screening of components in a graphic model is strongly
subjective and probably insensitive to lesser effects, but it is still rational. The
loss in screening power here, compared to that of rigorous testing systems, is counter-
balanced by high sensitivity in the identification of complex curve forms admitted to
the graphic screening process.

Given an accurate mathematical descriptor of the graphed model, the model can be
fitted as a unit to a pertinent data set; i.e., a gross, least-squares adjustment for
elevation and scale of the model in space. So, at least at one stage in model develop-
ment here, objectivity is achieved in the fitting process.

In summary, the strength of this model-building system seems to lie in its sensi-
tivity to complex forms and simplicity of curve-form development. Its weakness is lack
of objectivity and lack of sensitivity to minor effects in any screening effort. How-
ever, for relations wherein strong interactions are expected, we judge the advantages
to predominate.

But, for the majority of applications we have witnessed, prior information is so
weak that it provides only general curve-form guidance; it offers little or no infor-
mation on specific algebraic transformations of the independent variables likely to
emulate response curves in the population involved. As a result, the analyst often
submits an elementary array of rather arbitrarily selected components (e.g., X;, X3,
X12, X2, X;X;) to the screening process. Here, the potential is great for curve-form
bias and for unexploited information in the data, especially when there is a general
expectation for curves and/or interactions in the relation. Speed and economy, but not
necessarily sensitivity, characterize such an analysis.

The screening process above can be amended to include the development of progres-
sively more sensitive components based on the analysis of residuals from sequentially
fitted models. If so, it more nearly possesses the attributes of the graphic model-
development approach; i.e., the components are selected to match data trends visible
in the data.

By way of summation, there is substantial incentive for developing a model graphi-
cally when only general expectations exist for a relation (the usual case) and when
those expectations include curvilinear main effects or interactions of any form (again,
the usual case).




GRAPHIC MODELING

To begin with, let's consider graphic forms as they are necessary to our mathemat-

ical modeling strategy. For example, a graph for a two-dimensional (2-D) relation might
appear as in figure 1.

Figure 1

For 3-D relations, a graph might be presented as a complete surface (fig. 2).

Xq-

Figure 2



But, for purposes of model development here, it is only necessary to show 2-D graphs
(e.g., Y over X;) at representative points in the third dimension (fig. 3).
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Y-

Low
s

X-

Figure 3

For 4-D relations, the 3-D sets of 2-D graphs can be shown at representative points in
the fourth dimension (fig. 4),

HIGH
HIGH
Y-
HIGH

Xq- Xq- Xyq-

Low MEDIUM HIGH
X3

Figure 4
and so on for more dimensions.
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MATHEMATICAL DESCRIPTORS

Two | Dimensions
GENERAL

" This system of graphic display might be described as ultimately 2-D, as are the
mathematical models developed here. For example, in any one of the foregoing 3-D graphs,
the specific 2-D sigmoidal shape of Y over X1 would be identified from Matchacurve-1
(Jensen and Homeyer 1970) for each level of Xo.

Changes in the shape-controlling parameters (P;) of these sigmoids would then be
expressed as 2-D functions of X;, as would the intercepts and scalars (the differences
between maximum heights and intercepts) of these curves. The descriptor for the
surface, composed of 2-D components, would be:

Y = intercept + scalar (sigmoid)

where:
intercept = constant in the above examples, but could

£,(X5)

scalar = fi (Xp)

sigmoids = f(PiJ, and

o
I

i = £fi(X2)

The same procedures can be extended to four or more dimensions. Then, the analyst's
capability for developing accurate descriptors for graphed relations involving two or
more dimensions depends largely on his ability to find or create accurate 2-D deseriptors,

MULTIPLE-COMPONENT DESCRIPTORS

In Matchacurves-1 and -2, Jensen and Homeyer (1970, 1971) provide 2-D descriptors
for a fairly broad array of curve forms.l/ When a suitable "match" for a graphed curve
cannot be found, 2-D descriptors can generally be developed by sequentially ""matching"
segments of the graphed curve and adding descriptors for the parts to arrive at the
whole.

1/The reader should be familiar with the content of both publications to ease assim-
ilation of the procedures herein.



Introductory Example

A commonly encountered kind of curve form that departs from the single-component
Standards of Matchacurves-1 and -2 is represented by the graphed curve in figure 5.
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Assume this is the curve to be described. Now, a discerning analyst will immediately
reject it as a single-component exponential form because of the second pronounced bend
in the curve at 700 < X < 1000, But, let us run it through Matchacurve-2 procedures
to provide a contrast for a two-component form to be developed subsequently.

Representative points of the curve are scaled to a maximum of 1.0 in both X and Y
below,

Table 1
X (X/1000) Y (Y/100)
0 0.0 0.0 0.00
200 i 5.2 .05
400 .4 17.0 7
600 .6 335 .34
700 b/ 43.0 .43
800 .8 54.8 .55
900 .9 4 [ ) odd
1000 1.0 100.0 1.00




Y/Yp

and are replotted as a 5- by 7.5-inch (reduced to 4.25 by 6.25 inches for publication)
overlay curve, the same size as the Standards (fig. 6):
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A-1. — Standards for position A, set 1 — (X-transform to be fitted by
least squares = (X)7, 0 <X < X p)‘

Figure 6

As is evident, there is no suitable match for the overlay curves in the n > 1.0 Stan-
dards (set A-1). Although overlay curves are not shown, the same holds true in the
0 <n < 1.0 (set A-2) and the n < 0 Standards (set A-3).

Having thus exhausted the single-component Matchacurve-2 alternatives, we now
resort to description of the graphed curve in two pieces. The first part selected
covers the range 0 < X < 700 since that portion of the curve in figure 5 has only one



point of bend and seems reasonably similar to the conformation of the n > 1.0 Standards.
Next, X and Y are scaled to 1.0 at X = 700 (table 2, columns 1-4).

Table 2
: 1/

X (X/700) Y (Y/43.0) : bxie8s Y-bX 09
0 0.00 0.0 0.00 0.0 0.0
200 .29 5.2 .12 5.4 - .2
400 +57 17.0 .40 171 - .1
600 .86 33.5 .78 33.3 2
700 1.00 43.0 1.00 43.0 0
800 54.8 53.6 12
900 71.1 65.1 6.0
1000 100.0 77,5 22.5

Vg 43.0/(700)1-85 = 0,0008691

After plotting an overlay curve and comparing it to the n > 1.0 Standards (fig. 7),

1.0

Y/Yp 5

T
THT I '
T

Tt

>
It

2 4 5 .6 % .8 .9 1.0
X/Xp

A-1. — Standards for position A, set 1 — (X-transform to be fitted by
least squares = (X)7, 0= X = Xp}

Figure 7




we find that X165 gives a good match for the curve in the 0 < X < 700 range.2/
X1+65, scaled to 43 at X = 700, gives a fairly close approximation of the representa-
tive Y values (table 2, column 5). As might be expected, this relatively flat curve
is too flat when extended to represent the desired curve in the 700 < X < 1000 range.
The differences, 1.2, 6.0, and 22.5 (table 2, last column), represent the curve of
values that must still be added to match the desired curve. Needed in the descriptor
is a second component that is zero in the 0 < X < 700 range and about equal to the
curve of values just indicated in the range 700 < X < 1000.

By scaling X and (Y-bX!*65) to 1.0 at X = 1000 (table 3, columns 1-4);

Table 3
_bx1.65
(Y-bX ), sl/

X (X/1000) Yy (Y1/22.5) bx12.

0 0.0 0.0 0.00 0.0
700 7 .0 .00 3
800 8 1.2 .05 1.4
900 .9 6.0 27 6.0
1000 1.0 22.5 1.00 22.5

I gy = 22,5/(1000)12-5 = 7 115 x 10-37

2
The generating of curves that lie between the Standards of either Matchacurve-1
or -2, along with the compounding and verification of more complex forms, virtually
necessitates ready access to a computer. A small, desk-top computer is ideal for the
tasks at hand. It should have at least: 250 words of program storage, 10 storage
registers, capability for Xn, e, conventional mathematical operations, and recorded
input and output potential.




making an overlay curve, and comparing it to the n > 1.0 Standards (fig. 8),

I.O-E

Y/Yp 5
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X/Xp

A-1. — Standards for position A, set 1 — (X-transform to be fitted by
least squares = (X)7, 0 = X = Xp)

Figure 8

we find that X!3 might match the required curve fairly well, but, on trial, X!2:5
performs a little better. Scaling X!2'5 to 22.5 at X = 1000 gives values close to
those desired in the 700 < X < 1000 range (table 3, column 5). Then the complete
descriptor is:

Y = (8.691 x 107%) X165 4 (7,115 x 10737) x12-5

with final values listed in table 4. In this case,_? is regarded as being satisfactorily
close to Y.

Table 4

X Y Y

0 0.0 0.0
200 5.2 5.4
400 17.0 17.1
600 33.5 33.4
700 43.0 43.3
800 54.8 55.0
900 b 5 § 71.1
1000 100.0 100.0

10




The computational ideas just shown are applicable to other curve forms, but a
larger array of ideas may be necessary to independent descriptor efforts by the reader.
The examples that follow are presented with decreasing explanatory detail as seems
appropriate to the stage of discussion. We will start with an abbreviated version of
descriptor procedures for the above example (fig. 5).

Section A, Multiple Exponentials Without Inflection

Figure 9

1.--Read a set of representative XY points from the graphed curve (fig. 9).
Select one X-value in this set, point c¢, such that the curve over the
range 0 to c appears to have about the same general conformation (one
point of bend) as the Standards of Matchacurve-1 (sets A-1, A-2, or A-3
for this spacial orientation).

2.--"Match" this exponential curve in the range 0 to c and determine n in X".

n

3.--Scale X" to f at ¢, b; = f/cn. Then, ?1 = bo + b, X",

1

Extend 91 over the range ¢ to d (dotted line).

4.--Match the exponential curve of residuals over the range 0 to d and
determine m in X™,

5.--Scale X™ to g at d, by = g/d™. Then, Y, = byX™

6.--Add components Y; and ?2. Then,

Y = b, *+ b, X" + b,X", b_ = 0.

If the intercept is some value other than zero, the above procedures apply to the
differences between the intercept and the graphed curve. And, as before,

Y = b, + b1X" + bX", but by # 0

11



Alternative orientations of the above curve in space can be handled simply, as

follows:

+

2
\\

Y-
Figure 10
f

b

%0 c d=
d (d-¢) 0--

In this case (fig. 10), the original curve is reversed in X.

for X and follow the foregoing steps 1-6. Then,

Y

0

= b, + biK" + bok™, 0 < X < d

Substitute K = (d-X)

c d e X

Figure 11

In Figure 11, the original curve is inverted about the intercept bg,.
absolute differences between b

\
)
~

and the curve, for the first

component, work with absolute di fferences between the first

original curve.

Follow steps 1-6, but subtract the two components from b,.

Y = by - b1X" - boX"
d (d—c) 0-
0 c d-
0
f
Figure 12 v
’I
o]
12

X

Work with
component. For the second
component curve and the
Then,



In figure 12, the original curve is both reversed in X and inverted about b .
Substitute K for X and work with absolute differences as in figure 11. Follow steps
1-6 and subtract the two components from b,. Then,

7 n m
Y = b, - bk = bk, 0<X<d

These mechanics for reorienting a curve have general application and greatly facilitate
descriptor-development efforts.

Section B, Multiple Exponentials With Inflection

Y-

Figure 13

Figure 13 is a variant of the original curve in Section A. Steps 1-6 still apply,
except that the last component is subtracted from the first. Then,

Y = by + blx“ - ngm

Alternative orientations of this curve in space can be handled as described under
Section A along with appropriate changes in sign for the last component.,

Section C, Multiple Exponentials With Flat Central Segment

Y-

f (f—c) (f—d) 0-- K= (f-X)

Figure 14
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The descriptor for a curve that has an extended flat midsection (fig. 14) can often
be treated as follows:

1.--Determine the intercept, by, by graphic extension of the flat segment.
Calculate the slope of the line. Then,

Y1 =bo + b1X

2.--Determine the residuals of the curve from the straight line for repre-
sentative points over X. Be sure to include three or four such points
at each end of X, where the curve bends away from the straight line.

3.--For the right-end departures, symbolized here as Y,: scale X and
Y, to 1.0 over the whole X-range; find a suitable n in X" by using
the Standards of Matchacurve-2; scale X" to g at f, by = g/f". Then,
the right-end descriptor is:

¥, = boX"

4.--For the left-end departures, symbolized here as Yj3: reverse the
X-axis by substituting K = (f-X); scale K and Y3 to 1.0 over the
whole range of X; find a suitable m in K™ by using the Standards; and
scale K™ to h at f, by = h/f™, Then, the left-end descriptor is:

‘?3=b3Km
5.--Then the entire descriptor is:
Y=b0+blx+b2)(n+b3Km, 0<X<f
Variants from this curve include negative departures from either or both ends of

the straight line. In such cases, the signs of the corresponding components simply
become negative.

Of course, there is no limit to the number of components that can be used in a
descriptor, unless the analyst has algebraic simplicity rather than accuracy as an
overriding objective. With electronic computer service available almost everywhere,
computational complexity should not be a limiting factor.

Section D, Single Sigmoids

For any curve that has an inflection and a distinctive peak (positive or negative),
the sigmoids of Matchacurve-1 generally offer more sensitivity than the exponentials.
(Note that sigmoids may be created with two exponentials of opposite sign, as is
partially detailed in Section B.). Sigmoids are shown here in combination with linear
effects for added descriptive power.

Figure 15
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In this case (fig. 15), we can use a straight line with slope by = f/d. The
intercept plus the straight line is Y, = by + byX. Then add to Y, a sigmoid3/ matching
the curve differences, Y3, from the linear function, scaled to g at the point in X (d
here) where Y4 peaks. The sigmoid matching process is analogous to steps 1-5 in Sec-
tion A. Representative sets of X- and corresponding Y -values are scaled to 1.0. An
overlay curve is made and compared to the sigmoid Standards of Matchacurve-1, and n and
I for a matching curve are noted.

The final sigmoid component is Y, = gE, where:
g is the scalar for E
E, specified as Y/Y, in Matchacurve-1
(page 4), symbolizes the e-transform, which varies from

Zero to one in the range XP + Xp,

XP is the point in X where the sigmoid peaks in either a positive or a negative
vertical direction.

n and I are appropriate curve-shape parameters identified from the matching curve
in the Standards. These, along with XP, are necessary inputs to E,

The final descriptor is then:
Y = b0 + b1X + gE

Alternative arrangements of the sigmoid about the straight line would require
treatment as detailed under Section A, but a brief explanation follows:

Figure 16 Pigure 17 Plgure 18

For figure 16
XP = d in the X-scale and the sign of the sigmoid component would become negative:

Y = by + byX - gE

For figure 17

K = (d-X) would be substituted for X in E, Xp
and the sigmoid would be positive:

d in the K-scale,

Y = b, + byX + gE, 0 <X < d,

E/Appropriate sigmoids can be selected from the Standards of Matchacurve-1.

15




For figure 18
Again, K = (d-X) is substituted for X in E, Xp = d in the K-scale, and the sigmoid
is subtracted:
Y =b, +b;X-gE, 0<X<d.

The same sigmoid alternatives exist when the slope of the straight line is negative,
the only change in the descriptors would be that the sign of the first component would
be negative.

Section E, Multiple Sigmoids

Sometimes the combination of several sigmoidal (upright or inverted) components can
be used effectively to describe asymmetrical curves. Each sigmoid is matched and scaled
independently and both are summed in the final descriptor.

7 h1:r '}—f'_—'

b i i

d 0 d 0 - K = (d—X)
Figure 19 Figure 20

For figure 19

<
n

K = (d-X) is substituted for X in E,, Xp1 = d in K, and d in X:

p2
Y = b, + fE; + gE,, 0<Xz<d

For figure 20

K = (d-X) is substituted for X in E,, Xpl = d in K, and sz d in X:

Y=b,-fE, - gE,, 0<X<d

o)

Section F, Exponentials and Sigmoids

Of course, exponentials and sigmoids can be used in combination (fig. 21).




Where:

Xp = d in X for E, and Y = by + gE - (f/dn)Kn, 0 <X<d

Section G, Bell-Shaped Curves

Bell-shaped curves, in whole or in part, can be summed in a descriptor. And, in
this particular example (fig. 22),

Y-

0 80 . 1565 ----ee Z= (X +40)

Figure 22

the peaks of the two leftmost bell-shaped curves occur at points other than the extremes
of the X-range, which is not true in previous examples involving sigmoids. A peculiar-
ity of E is that its controlled use is within XP + XP, where XP is the point in the
X-range at which the Y-peak (either positive or negative) occurs and XP + XP are the
points at which the tails of the bell-shaped curve drop to zero. Beyond these points,
the sigmoid values become negative. Then, where an XP is used such that XP + XP does
not cover the pertinent range of X, it becomes necessary to alter the X-scale so that

it does. The discussion below for the foregoing graph (fig. 22) should clarify both

the problem and its solution.

"E'" specifies a symmetrical, bell-shaped curve with values ranging from 1.0 at XP
to zero at XP + XP. With XP = 40 for the first bell-shaped curve, the range of appli-
cation for E is 40 * 40, or from zero to 80. Beyond X = 80, E would actually dip
below zero by some unspecified amount. The problem is simply remedied by adding a
large enough constant to X such that XP + XP would cover the original maximum of 115.
Z = (X + 40) accomplishes this nicely; so the descriptor would be:

For the first curve,
Y, = fEl, where Z replaces X in E and Xp = 80 in Z;
for the second curve,

-

Y, = gEz, where X is used without transformation in E, since XP = 90 gives an
applicable range for X of zero to 180, covering the X-extreme of 115 as
required;

for the third curve, the left half of a bell-shaped curve,

?3 = hE,, where X is also used without transformation in E since XP *+ XP
(1?5 * 115) covers the pertinent range of X, 0-115.

17



Then, the entire descriptor is:
Y = b,

where:
E; involves Z

E2 involves X

E3 involves X

Section H, Matching Parts of Exponentials or Sigmoids

On occasion, the added effort required to compile a multiple-component descriptor
can be avoided by utilizing a portion of a single-component curve.

Assume the curve in figure 23 (A) below

@) ®)
Y=
(R) (R +500) (R)
500 1000 500
0 500 O e e e
0 10...(S) N
/5
/
7z
0 —500 - A
-10 0 10...(S)
0 10 20...X=
(S +10)
Figure 23

is to be described mathematically and that no satisfactory matching curve has been
found in Matchacurves-1 or -2. As an alternative, the analyst could undertake a
multiple-component description, but another single-component possibility exists. Extend
the desired curve in (a) such that the resulting form approximates that of any sigmoid
shown in the Standards. Add a constant to the abscissa such that XP * XP covers the
pertinent range of X. (S + 10) turns the trick here. Also, add a suitable constant,
500 in this case, to R for overlay scaling purposes only. For representative points
from the right half of this curve, scale the X-Y pairs to a maximum of 1.0, construct
an overlay curve, and find a matching Standard for the upper half of the overlay. The
adopted single-component standard fitted to the X- and Y-values then represents the
original curve in the region 10 < X < 20. The resulting descriptor is:

R = -500 + 1000 E

where:
X=(S+10) in E, XP = 20, and 0 < S < 10.

Procedures for any fraction of any form are analogous.
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Summary Statement

In concluding the discussion for 2-D multiple-component descriptors, we reiterate
that the analyst's capability for developing sensitive multidimensional models depends
largely on his 2-D talents. The examples shown here, if understood, give enough pro-
cedural background to permit intuitive extension of the system to include more flexible
curve-form alternatives. The "live! example, which will be presented later, merely
serves to reinforce a few of these ideas through actual application.

Three Dimensions
GENERAL

Given 2-D curves over X, for representative levels of X, (fig. 24)
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ESSe RS REERIETT ol e © - g »25
0 SENEsns Semas s aas saooa oo SERE N ; i 0
0 2 4 6 8 10
X -
Pigure 24

and given a 2-D descriptor,
Y = intercept + scalar (X;-transform)

. for each such curve, the analyst is in a position to formulate a descriptor for
the implied surface. He simply expresses the changing intercepts, scalars, and
parameter(s) of the X;-transform in terms of X,. He then substitutes appropriately in
the original 2-D descriptor.

Assume pertinent information for the four sigmoid curves above has been assembled
by using Matchacurve-1 Standards (table 5, colums 1-6).

Table 5
Sigmoid parameters
Xs intercept XP n I* scalar scalar i
0 20 10 3.0 0.90 25 25.0 0.900
2 20 10 3.0 .87 61 61.1 .870
4 20 10 3.0 .66 169 169.4 .663
6 20 10 3.0 .10 350 350.0 .100

*Let I = sigmoid inflection point in X; as a proportion of the
range in X;j.
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Here, the intercept and the sigmoid parameters, XP and n, are constant over Xz;
the scalar increases and I decreases exponentially with increasing X,-values. Using
Matchacurve-2,

25 + 9.028(X,)?2

scalar

I=0.9- 0.003704(X)3

By substituting in the original equation for ?,

? = intercept + scalar (X;-transform)
Y = 20 + (25 + 9.028(X,)2) (sigmoid)
where:
3
(X,/10)-1 ( i ) 3
. T=1
sigmoid = £ =2
(ats)
L. e.\T-D

and I is as specified above.

By plotting computer solutions for Y at pertinent combinations of X; and X,, we can
see that the descriptor lies quite close to the original curves (fig. 25).
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Then, the entire predicted surface appears as follows (fig. 26):
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Figure 26

Note that the original curves may be given over X, instead of X;, in which case, the
roles of X; and X, in descriptor development woulé be interchanged. Also, where
multiple-component 2-D descriptors are necessary for the original curves, each component
can be treated as a separate X-transform to be added in the final descriptor.

This descriptor system is applicable to virtually any surface and is especially
useful in emulating strong interactive relationships. An application to a "live" data
setl involving such interaction is documented below as a means of demonstrating actual
use of some 2-D alternatives available to the analyst.

'""LIVE' DATA EXAMPLE

On each of 16 passes over a level target area, 600 gal of fire retardant were
dropped from an aircraft. Square-foot coverage and volume of material reaching the
ground per 100 ft? were measured for each drop along with drop height, windspeed and
direction, aircraft speed, temperature, humidity, and so forth. Interest centered on
the change in coverage of > 2 gal/100 ft2 over a controlled range of drop heights within
a partially controlled range of windspeeds.3/

Suppose the plane were rolling along the ground (drop height = 3 ft) at normal
flying speed and in the absence of wind, it would be expected that a 600-gal drop would
be distributed over a relatively narrow strip of ground and that the area covered by
> 2 gal/100 ft2 would be held to some nominal value. Increased aircraft (and drop)
height should result in greater dispersal; maximum coverage should be reached at some
optimal height. As drop height is increased beyond the optimum, dispersal of the re-
tardant from air friction and evaporation should become more complete; coverage should
finally reach zero at some relatively great drop height.

So expectation at zero wind is for a bell-shaped curve truncated to the left of
the peak. With increasing wind, optimal drop height and peak coverage should diminish,

4]The author is indebted to the Northern Forest Fire Laboratory, Fire Control
Technology Project, Missoula, Mont., for the '"live" data used here (George and
Blakely 1973).

2/The effects of all other variables were either negligible or unidentifiable in
this data set.
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since dispersal of the retardant would be accentuated by the horizontal shearing force
of the wind. Thus, the expected surface was as shown in figure 27 below.

WINDSPEED
{(MPH)

COVERAGE, SQ. FT.

DROP HEIGHT
(FEET)

Figure 27

Using these expectations as guides, coverage, C, was curved over height, H, fitting
the curves to actual data points by approximate least deviations (Karst 1958) for each
of three data groups in wind, W (fig. 28):
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These curves, plotted at their respective W means, were connected over W to form
the implied surface, figure 29. And, it can be seen that major features of the expec-
tation are reflected in the data--even within the limited range of H and W.

C, IN THOUSANDS

100 200 300

-H-
Figure 29

Figure 29, then, is the basic surface for which a descriptor was developed.
Assuming that the curves over H (figs. 27, 28) could be suitably represented by
segments of symmetric bell-shaped forms, the e-transform of Matchacurve-1 was deemed
applicable and the problem of identifying matching e-transforms approached.

The e-transform is limited in that it will yield values of from zero to one in the
full bell-shaped form only within the range HP + HP, where HP is the point in H at which
the C-values peak. And, it was a unique feature of this example that the maximum H-
values for all three curves of the set exceeded 2HP (fig. 30).
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The broadest curve (for W = 0.5) was estimated to peak at H = 273. 1In this case, the
e-transform would have dropped below zero where H exceeded 2HP, or 2(273) = 546, long
before the approximate graphed limit of H = 1150 was reached.

One solution would have been to supplant H with a transform such as X = (H + 1000),
Then, since 2XP for the broadest curve would have been 2(273 + 1000) = 2546--safely
beyond the upper limit of X = (1150 + 1000) = 2150--the excess would allow for the
slightly larger curve span likely to exist at W = 0.

The transform actually adopted, X = (1250 - H), differed from X = (H + 1000); the
H-scale was reversed for a rather minor computational convenience and a slightly larger
constant (1250) was selected, but the rationale was the same. Descriptor development
is presented in terms of X = (1250 - H).

Next, necessary inputs to the final coverage estimator were considered:

| _xxey - )" - - 1)t

=3 %

[

= CP
n
L. e- (/A - 1)

where,
C = coverage in square feet (> 2 gal/100 ft2)
CP = coverage peak (scalar for the sigmoid)
X = (1250 - H)
XP = the point in X at which C peaks

I = the proportional point in X at which the inflection point of the bell-shaped
curve occurs (a) in the range X = 0 to XP for the left half of the curve or
(b) in the range (2XP - X) for the right half (fig. 30)

n = the power of the transform that dictates the degree of curvature above and
below any inflection point.

Since the XP- and CP- values read from the three curves in figure 27 varied
with wind in accord with expectation, they were each expressed as a suitable
function of wind by using Matchacurve-1 and -2 techniques.

XP- and CP-values from the foregoing equations along with representative X- and
C-values read from one side of the XP for each bell-shaped curve were scaled to the
Standard curves in Matchacurve-1. Standards suitably similar to the scaled data
curves were identified, and the corresponding n (held constant) and I-values were
recorded. Varying over wind in accord with expectation, "I" was described as a
function of wind to complete the inputs to the coverage estimator. The details of
these computations follow:
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For XP = f(W)

Paired W- and XP-values (0.5, 977; 3.2, 1072; and 9.6, 1170) were read from
figure 30. These points were plotted and a smooth curve was drawn through them (fig.
31) that extended over the relevant range of W (0-15 mi/h).

1190 R . S S S S S SN SR S E— — W — —
‘i’ 1170
20
1100 -
® 1072
1
r/
'L 7/ 118
/ 2.25
1000 1,7 XP = 1190 — .4572 (15—W) %
T 977
25
900 - ' -
0.5 3.2 9.6 15.0 - (W)
| I I I
145 11.8 5.4 0 - (15-W) = X

Figure 31

The initial descriptor approach here was to subtract a single-component exponential
curve on the reversed W-scale from the intercept, 1190. W was reversed in X = (15-W) to
aline large values of the independent variable with those of XP. Next, the three data
point X-values and associated coverage differences (absolute) from 1190 were scaled to
1.0 at X = 14.5. An overlay curve was plotted for Matchacurve-2, but was not well
matched by any curve in sets A-1, A-2, or A-3 of the Standards; so a two-component
approach was adopted. This time, the differences were fitted at X = 0, 5.4, and 11.8
to start with (see the dotted line below the intercept, 1190, in figure 31). Then, the
difference (0.25) between the first curve and the desired curve (for 11.8 < X < 14.5)
was added as a second component. Computations are summarized in table 6 and overlay
curves are shown in figure 32.
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Table 6

(15-wW), (1190-XP),

W XP X . (X/11.8) Y Y/118 (b3x2-25)lf
0.0 o 15.0 ik a o o
.5 977 14.5 -- 213 -- 188
3.2 1072 11.8 1.00 118  1.00 118
9.6 1170 5.4 .46 20 .17 20
15.0 1190 .0 .00 0 .00 0
(Y-byX2:25), A
X X/14.5 d d/25 (b2x2°}2/ xp3/
15.0 ~= na o - 936
14.5 1.00 25  1.00 25 977
11.8 .81 0 .00 0 1072
5.4 .37 0 .00 0 1170
.0 .00 0 .00 0 1190
1 by = 118/(11.8)2-25 = 0.4572
2/ b, = 25/(14.5)20 = 1.4811 x 10722

A
3/ XP = 1190 - byX2:25 - b,X20-_yhich gives a perfect match for the
original XP-values at control points 0-14.5 in wind.
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The completed function was then:
Sp e 110= 0745720 (15W %20 = 1. 481L. % 10-22 (15-W)20, 0 < W <15
For CP = f(W)
Paired W- and cp-values (0.5, 8900; 3.2, 8100; and 9.6, 6970) were read from

figure 30. These points were plotted and a smooth curve drawn through them (fig. 33)
that extended over the relevant range of wind, 0-15 mi/h.
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Figure 33

Again, a single-component exponential was first tried for the descriptor here.
Reversing the W-axis to X = (15-W) to aline large values of the independent variable
with those of CP, the X- and CP-values were scaled to 1.0 at X = 14.5. An overlay curve
was constructed and compared to the Standards of Matchacurve-2. But, none of the
Standards were acceptably close to the overlay; so @ two-component model was tried

next.

To start with, the lower end of the curve (0.0 < X < 5.4) was fitted with an
intuitively selected flat form (X'+1); it was obvious without scaling and overlays that
the curve was extremely flat in that range of X (fig. 33). The X!-1 was then scaled to
the difference (580) between the intercept (6390) and the desired curve height (6970)
at X = 5.4; so the first component, a partial descriptor for CP, was:

CP = 6390 + (580/(5.4) 11 (15-w) !

This is the dashed line above the intercept (6390) in figure 33, The remaining differ-
ences, 340 and 791, and the associated X-values were then scaled to 1.0 at X = 14.5

(table 7).
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Table 7

X = / difference, /

(15-W) (X/14.5)4 d d/791%
0.0 15.0 == -- --
.5 14.5 1.00 791 1.00
3.2 11.8 .81 340 .43
9.6 5.4 .37 0 .00
15.0 .0 .00 0 .00

1/

Proportions for overlay curve.

The paired proportions were then plotted, an overlay curve drawn, and the latter com-

pared to set A-1 of the Matchacurve-2 Standards (fig. 34).
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Figure 34
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The Standard curve with n = 4.0 matched the overlay fairly well. So the fourth
power of X was scaled to the difference, 791, at X = 14.5 and added to the partial
function already in hand. Then, the complete function was:

N

CP

6390 + (580/(5.4)1-1)(15-W)1e1 + (791/(14.5)%) (15-W)"

6390 + 90.739 (15-W)1«1 + 0.017894 (15-W)",

0=X=15

where the computations are as summarized in table 8:

Table 8
(15-W), (CP-6390), /
W CP X  (X/5.4) Y (Y/580) (byx!.1yL
0.0 & 15.0 o -- s= ==
5 8900 14.5 - 2510 - 1719
3.2 8100 11.8 e 1710 -- 1370
9.6 6970 5.4 1.00 580 1.00 580
15.0 6390 .0 .00 0 .00 0
(Y-byx1e1), / AL/
X (X/14.5) d (d/791) (bpx*)2/  cpd
15.0 - = e = 9080
14.5 1.00 791 1.00 791 8900
11.8 .81 340 .43 347 8107
5.4 .37 0 .00 15 6985
.0 .00 0 .00 0 6390
Y by = 580/(5.4)1«1 = 90.739
2/ v, = 791/(14.5)% = 0.017894

A
1) CP = 6390 + byX!«l + byxX*. These are sufficiently close to the

original CP-values for our purposes.

Matehing Bell-Shaped Curves

A
Tables 9-11 list ib— and CP-values from the equations developed in the foregoing
sections along with some representative X- and C-values from either side of the XP-
values for the three curves in figure 30. Also listed are C-value estimates obtained
by using matching e-transforms from Matchacurve-1 Standards (see the overlay curves in
figure 35).
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Table 9

(1250-H), (2xp-x),&/

M
W H X K (K/977) C  (C/8900) c2/
0.5 50 1200 754 0.772 6860 0.771. 7157
100 1150 804 .823 7800 .876 7793

150 1100 854 .874 8450 .949 8322

200 1050 904 925 8770 .985 8692

273 77 (977 1.000 [8900]2/ 1.000 8900

Y Temporary transform for plotting the overlay curve only. The X-values
need to be in ascending order toward XP = 977.

2/ Estimated coverage using the e-transform with CP = 8900, XP = 977,
=0.510, n = 2.0, and a zero intercept.

3f Smoothed values from the XP- and CP-estimators, each a function of
wind (shown earlier in the text).

Table 10
(1250-H), =, § A/

W H X K (K/1072) Q (C/8107) cl
3.2 50 1200 944 0.881 6730 0.830 6843
100 1150 994 .927 7600 .937 7612

150 1100 1044 .974 8040 .992 8042

178 (1072] [1072] 1.000 1.000 8107

l/ Estimated coverage using the e-transform, CP = 8107, XP = 1072,
I =0.710, n = 2.0, and a zero intercept.

Table 11

(1250-H) ,1/ A

W H X (X/1170) C C/6985 c2
9.6 80 1170 1.000 6985 1.000 6985
100 1150 .983 6820 .976 6845

150 1100 .940 5300 .759 5448

200 1050 .897 3270 .468 3364

250 1000 .855 1830 .262 1612

300 950 .812 997 .143 600

1/ Since the right half of this curve (fig. 30) was read, X-values
are already ascending toward XP = 1170 and no transform of X is
necessary for plotting the overlay curve.

2/ Estimated coverage using the e-transform, CP = 6985, XP = 1170,
I =0.880, n= 2.0, and a zero intercept.
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Figure 35

As may be seen in tables 9, 10, and 11, the coverage values of each curve were
scaled to 1.0 by using the appropriate CP as the maximum. The values of X or of (2XP-X)
were similarly scaled by using the appropriate XP as the maximum. After the paired
proportions for H-levels within W-levels were plotted and smoothed as three overlay
curves, they were compared to the Matchacurve-1 Standards for n = 2 (fig. 35).

Although better matches for some of these overlays can be found in Standards that
have n other than 2.0, ¢t was decided to hold n constant over wind to avoid surface
irregularities that may develop when both n and I are allowed to vary. Then, the
I-values (XI/XP in the Standards), corresponding to the best matching curve alternatives
in this set, were estimated to be 0.50, 0.70, and 0.88 for W = 0.5, 3.2, and 9.6,
respectively. On scaling and checking these and alternative curves (by means of a
small computer) at the tabled H-values by W-group, some improvement was achieved with
the final I-array, 0.51, 0.71, and 0.88. The last column in each of tables 9-11 shows
the final scaled coverage estimates. There was close proximity of these values to
actual coverage, C, so I = f(W) was next developed.

For I = f(W)
Using the paired wind and I-values just determined (0.5, 0.510; 3.2, 0.710; and

9.6, 0.880), "I" was plotted over W and a smooth "initial" curve drawn through the
three data points (fig. 36).

31




: s s s e
9 T -
i
i
8 - FINAL
: G NUMGCROUE POIRT
.
E POINTS:
7
-
6 &
i
55?
4@ = 2
i .
o — llili
0 1 2 3 4 5 6 7 8 9" 0. A2 o.13 - 14 15
W-
Pigure 36

On checking the performance of the e-transform over the range of W, with smoothed
CP-, XP-, and initial I-values, it was found that the left edge of the surface undulated
unacceptably. Further, performance in the high-wind group was not well balanced for the
relatively divergent wind levels there (6.4, 8.4, 10.4, 13.2). These problems were
largely overcome by iteratively adjusting to the ''final" curve in figure 36. This was
the one for which a descriptor was developed.

This curve was judged to be a multicomponent model because neither the sigmoids
nor the exponentials have the flattened central segment found there. Since a suitable
single-component exponential was not found, the flat segment was represented by a
straight line; the negative differences at the left end by an exponential; and those
at the right by a portion of a sigmoid (fig. 37).
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The Flat Segment: A straight line was drawn along the '"final" curve.
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cept, 0.62, and values necessary to the coefficient for W, (1.054-0.620)/15 =
were read directly from the graph.

l <— 0.62 + 0.0289 (W)

<+— “FINAL"” CURVE

The inter-

0.0289,

The Left End: This portion of the curve was satisfactorily matched by a single
exponential of the reversed W-axis, scaled at W = 14.5 (table 12).

Table 12
(0.62 + /
(15-W), / 0.0289 W), (Y;-1), /(b2X12:75),2
W X  (X/14.5)L I Yy d (d/0.124)L d
0.0 15.0 --  0.400 0.620 0,220 - 0.219
.5 14.5 1.00 .510 .634 .124 1.00 124
1.0 14.0 .97 .581 .649 .068 .55 .069
2.0 13.0 .90 .657 .678 .021 A7 .020
3.2 11.8 .81 .710 712 .002 .02 .004
1/

Proportions for an overlay curve that is not presented here in the
text.

b, = 0.124/(14.5)16-75 = 4.3703 x 10721, The d-values are suffi-
ciently close to the original d-values for our purposes.
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So the partial form at this point:
Y =0.62 + 0.0289 (W) - 4.3703 X 10721 (15-w)16.75

The Right End: For this portion of the curve, the differences, Y, from the
straight line and associated scaling information are listed in table 13.

Table 13
0.62 +
, 0.0289(W), (Y;-1), y
W (W/15)L 1 Yy Yo,  (Yp/0.15)L
8.4 0.56 0.863  0.863 0.000  0.00
9.6 .64 .886 .897 .011 .07
10.4 .69 .897 .921 .024 .16
13.2 .88 .904 1.001 .097 .65
15.0 1.00 .904 1.054 .150 1.00

v Proportions for overlay curve, scaled to 1.00 at W = 15.0 (fig. 38,
right side).

Since the curve of Y, over W is concave upward with increasing wind, both single-
and double-component exponential functions were examined as potential descriptors for
this curve, but none were suitably accurate. However, by reorienting the exponential
curve in space, reversing W to (15-W) and inverting Y, to (0.15-Y,), the curve becomes
convex upward with increasing values of (15-W). Also, it is at least roughly matched
by the sigmoid Standard, n = 8 and I = 0.108 (see table 14 and the left overlay curve
in fig. 38). This sigmoid was the result of an interpolation between the two Standards
I =0.1and0.2 at n = 8,

Table 14
(15-W), y (0.150-Y,), f(n.lgo e Ty,2/
W X (x/15) Yo Y, (Y3/0.150)L 3
0.0  15.0 1.00  0.000 0.150 1.00 0.150
8.4 6.6 .44 .000  .150 1.00 .146
9.6 5.4 .36 011 .139 .93 .139
10.4 4.6 .31 024 .126 .84 .130
13.2 1.8 12 .097  .053 .35 .053
15.0 .0 .00 150 .000 .00 .000
1/

Proportions for overlay curve, scaled to 1.00 at X = 15 (fig. 38,
left side).

2/ The scaled e-transform with n = 8, I = 0.108, XP = 15, and inter-
cept = zero.
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Then, the right end was specified as:

0.15 - Y = 0.150 e-transform, based on X = (15-W)

Y, = 0,150 - 0,150 e-transform,

3 8
T|T- o108 L= 008
Y, = 0.150 - 0.150{L% e

1.0




When all three components were assembled for I:

M
I =0.62+ 0.0289 (W) - 4.3703 x 10" 21(15-w)16.75

as-w _,|®
' 15
—.897
s 2035 0,15 2 - 0.08249 , 0<W<15
0.91751

This form can be simplified further as shown on page 37.

Estimated I-values are listed in the following tabulation:

W I I

0.0 0.400 0.401
5 .510 .510
1.0 .581 .580
2.0 .657 .658
3.2 .710 .709
5.0 . 766 .764
7B .838 .835
8.4 .863 .859
9.6 . 886 . 886
10.4 . 897 .900
13.2 .904 .905
15.0 .904 .904

where I and I were suitably close over the range of W.

At this point, all necessary inputs had been derived and the complete descriptor

was:
X/XP) - 1|2.0
& £_LT_%_T__| -(1/(1-1))2.0 l
c' =cp {—= .. -
= ~1)3&+
| - < (/a-m) l
where:
C' = coverage in square feet, estimated from the pre-least squares fit model
CP = coverage peak for any specified windspeed, W, or
CP = 6390 + 90.739 (15 - W)!+1 + 0.017894 (15 - W™*, 0 < W <15
X = (1250 - H)
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fo of
[}

drop height, 50 < H < 300
XP = point in X at which CP occurs, or

XP

1190 - 0.4572 (15 - W)2.25 - 1.4811 x 10-22 (15 - w)20

—
]

inflection point in X expressed as a proportion of
XP (XI/XP in Matchacurve-1),
and

I = 0.4565 + 0.0289(W) - 4.3703 x 10~21(15-Ww)16-75

(15-W) . 4 8
v 0 TS
0.892

+ 0.16349 e

Note that the last component has been simplified (see page 36).

Then, fitting this form back to the original 16 observations by least squares in
a simple linear model forced through the origin

C

bC' = least-squares estimate of coverage
where:

cc!
(cn?

over the 16 observations

The final model is:

C = 1.000569(C')
with C = 6962 = mean coverage
Sy-x = 850 = standard.error of estimate
R2 = 0.89 = coefficient of determination

The coefficient, b, is very near 1.0000; so it is evident that even before least-
squares adjustment, the original descriptor was well alined with the data spacially.
But, in checking the form of the descriptor by comparing predicted and actual coverages
(fig. 39), at least one anomaly appears. The three high-wind points probably lie too
close to the surface since greater variation occurs about the surface at lower wind
levels; i.e., reasonable variance about the surface would be expected at high-wind
levels also. The accuracy of the standard error of the estimate shown, 850, cannot be
assessed since an unknown number of degrees of freedom have been sacrificed by develop-
ing the detailed curve-form hypothesis on the data set from which the estimate was made.

37




W — GROUP
MEAN| RANGE [symBoOL

10 )
- Pt e L b 05 03-07 @
L st i
8 1 — ™ - III-_I‘I-
8 Mot 35 14-48 o
Z TIRPEEH R st B el
w 6 1 1 1 1 _"“]
2 HEH NN 'r :
O - - | 1 _‘+__
- ! ‘ I T -E
= F N R SRE N 6.4 NONE ®
U‘ EE 1: : ) T
2 : - -
' ST 8.4 NONE A
HEETHE 1T 104 NONE 4
0 g e 132 NONE
0 100 200 300
H
Figure 39

Recall that through the use of controlled I-values (fig. 36) for curves passing
close to the three high-wind points, low variation of these points from the surface was
assured. Alternative I-values could be used that would allow for variation from the
surface, in accord with some assumed variance criteria. This refinement was not under-
taken and the model was adopted as developed. Predicted values (table 15) and the
associated surface (fig. 40) for the model are as follows:

Table 15
Wind Drop height (feet)
(mi/h) * 50 100 150 200 250 300
0 7198 7804 8316 8710 8969 9081
5 6830 7525 7707 7337 6491 5338
10 6617 6707 4925 2619 1009 282
15 6345 5663 3460 1447 414 81
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Since the objective of this paper is to show the analyst a system that can be used
to exercise a great deal of curve-form control in model development, it is appropriate
to review the imposing list of constraints that can be met in models like this one.
Controllable items include: the intercept for the whole surface; the elevation, breadth,
and positioning of the peaks over the interacting independent variables; the trend in
Y at the truncated left edge of the surface; the magnitude of curvature above and below
the inflection points in the bell-shaped curves; and the positioning of the inflection
points themselves within the ranges of the independent variables.

Four or More Dimensions

Descriptor procedures outlined for three dimensions can be extended to more dimen-
sions. For example, given that we have a set of 4-D graphs, Y over X;, at four points
in X, and that each such set occurs at three points in X3 (fig. 4, page 4). Assume also
that we have developed 2-D descriptors for these 12 curves.

The corresponding 12 intercepts, scalars, and Xj;-transform parameters (call this
group of variables Ki) may vary systematically over X, and X3. So treat each K as a 3-D
relation, (K = f(Xp, X3). Plot it over X, and fit a smooth curve through the resulting
points at each of the specified levels of X3. Identify a suitably accurate 2-D, Xp-
descriptor for each curve:

K = intercept + scalar (X;-transform)




Now, express the intercepts, scalars, and X,-transform parameters (Ki) of these
curves as functions of X3 and compile the 3-D descriptors by substitution in the basic
X,-descriptor above:
where:

intercept = fa(X3)
scalar = fb(X3]

Xo-transform = f[Pj), and

B
)

[}

£, (X3)

The resulting Ki are then inputs to the 2-D,X;-descriptor:

-

Y = intercept + scalar (X;-transform)
where:

intercept = fC(Xz, X3)

scalar = £,(X2, X3)

Xi-transform = F(Pj], and

Pj = fj(xz: X3)

The expansion of the system to five or more dimensions is analogous and the amount
of descriptor development increases exponentially with the dimensions. This is the
cost of more complete curve-form control and is a factor to consider in selecting one
descriptor process from the array of alternatives.
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LIMITATIONS

The descriptor developed for a specific relationship by using the procedures out-
lined here is likely to be more complex algebraically than one developed from limited,
standardized transformations,--fairly popular at present. However, to the analyst who
has access to at least a small desk-top computer, the added computational complexity is
literally of no consequence. Such a computer is a minimum requirement for the applica-
tion of Matchacurve procedures.

Some new, but certainly not insurmountable, problems of communicating through reports
and publications are created. Complex descriptors are not easily translated into spacial
characteristics, often vital for reader comprehension. The solution to this problem is
to devote suitable discussion to the shapes and magnitudes of trends and to the limits
of application. To sidestep a potentially impossible task of hand calculation by the
reader, tables of computer-calculated values may be included for pertinent levels of
the independent variables. Rough interpolation, if required, can be left to the reader.

In reality, when graphic forms are developed from data, the effects of variables
incorporated in the model are being scaled visually by the analyst. Then, as is shown,
he makes further visual scale selections in quantifying this model mathematically. A
simple linear, least-squares adjustment of the entire model to some pertinent data set
(where available) helps to identify scales more objectively. By way of contrast, a
mechanized fitting process, such as least squares, could be substituted for the visual
scaling portion of the system and some benefits could accrue in the overall fitting
effort.

However, the practicality of this alternative is lessened in the presence of the
complex, nonlinear (in the parameters) mathematical models that often result from appli-
cation of the Matchacurve procedures. Estimating the parameters for such models
requires the use of rather specialized fitting techniques (Hartley 1961; Spang 1962;
Marquardt 1963) and, quite possibly, mathematics beyond the average practicing analyst.
Marquardt's iterative system seems to be the most acceptable, but no system appears to
be universally applicable (Draper and Smith 1966).
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