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ABSTRACT

Methods are shown for achieving sensitivity in mathematically
describing asymmetric curve forms. Independent, but compatible,
descriptors are developed for each of several response surface
regions or segments, in the examples given. The methods are
analogous for problems necessitating the use of additional segments
and/or dimensions.




INTRODUCTION

Mathematical description of asymmetric curve forms expected in a regression
relation can be difficult when descriptor components must apply over the entire range
of each independent variable involved. Under such constraint, failure of the analyst
to find suitably accurate forms (Bartlett [1947] and Draper and Hunter [1969]
recognized the necessity for allowing the analyst to establish his own acceptance
criteria) among his available alternatives might prompt adoption of a segmented descrip-
tor system. For our purposes, a segmented descriptor system is one wherein the
relation to be described is divided into two or more segments covering the ranges of
one or more independent variables. A descriptor is developed for the portion of the
response curve within each segment and applies there exclusively. The contiguous
array of these segments then portrays the entire relation. The segmented approach
might be regarded as less elegant, perhaps, from the standpoint of mathematical and
statistical manipulability, but this may be a necessary trade-off for descriptor
accuracy.

Segmented descriptors are developed for several three-dimensional relations
using systems outlined in Matchacurves-1 and -2 (Jensen and Homeyer 1970, 1971) and in
Matchacurve-3 (Jensen 1973). The first example involves a two-segment descriptor. At
the time of analysis, the general form of the relationship was known. A bell-shaped
curve, possibly asymmetric, was expected over the range of one independent variable,
while a sigmoidal curve was expected over the second. Strong interaction was likely
to occur between the independent variables.

Specification of a viable mathematical hypothesis for this potentially complex
form, from prior knowledge alone, was considered to be impractical. And, rather than
dedicate the data to the statistical evaluation of poorly specified hypotheses and
suffer a potential loss of information, the analyst elected to exhaust the data
graphically. The graphed model was then described mathematically. The resulting
function was refitted to response values at 36 control points on the graph, this by
least squares in the simple model....

Y = B (model transform) + ¢

Example #2, a three-segment descriptor, was completely specified in graphic form
from prior knowledge. The objective here was simply to describe the graphed model
mathematically, using the Matchacurve system. Data were not involved.

Both the graphic and general mathematical forms of these models are presented in
the text. Familiarity with the Matchacurve system will enhance understanding of the
segmentation adopted. Specific mathematical forms and associated explanatory material
are given in the appendix to reinforce the reader's knowledge, as needed, of mathema-
tical component development by means of Matchacurve.




EXAMPLE 1
AN ASYMMETRICAL, BELL-SHAPED RIDGE:
TWO SEGMENTS

In this descriptor, tree mortality percent in a western forest is characterized
by tree diameter (d.b.h.) over the course of a beetle epidemic (fig. 1). The descrip-
tor is applicable only at discrete points in time and at the midpoints of 2-inch d.b.h.
classes. Both variables are treated as continuous. As was evident in the original
data, the more-or-less bell-shaped trends over time differ substantially on either
side of the central ridge. For example, observe strong asymmetry at d.b.h. = 12 to
18 inches, made most noticeable perhaps by elevational differences in the curves at
their left and right extremes. See also the dwindling breadth of curve crowns above
and below 14 inches d.b.h., an interactive change included in the descriptor along with
asymmetry. Descriptor components were assembled as follows:

Left and right sides of the ridge were described separately (fig. 2 and 3), using
sigmoids from Matchacurve-1 that varied in shape and scale according to data trends
over d.b.h. Because the lower portion of the left half asymptoted at values larger
than zero, it was necessary to include the left-edge intercept, Int, (or floor) upon
which the left-side sigmoids rested conceptually. Int is a function of d.b.h. as is
the location of the ridge in time, XP.
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Figure 1.--Tree mortality over the course of a beetle epidemic.
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Figure 2.--Tree mortality over the course of a beetle epidemic....left segment.
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Figure 3.--Tree mortality over the course of a beetle epidemic....right segment.




Sigmoids are described within the range XP + 5 years (yr), since all sigmoids
are estimated to be fully expressed therein. Use of a constant maximum range, such as
XP £ 5 years, keeps descriptor components to a minimum for the sigmoidal time effects,
yet permits satisfactory matching of the objective curves in this case. Restated in
general terms, the whole descriptor is as follows:

Mortality percent = Int + Lsc (Lsig) + Rsc (Rsig)
where

Lsig = left sigmoid = f (Ln, LI, XP, Yr)...see the basic sigmoid parameters
defined in Matchacurve-1, page 3.

Ln = Lsig power = f;(d.b.h.)

LT = Lsig inflection point as a proportion of the range in years from
XP-5 to XP, = fy(d.b.h.)

XP = point in time where surface peaks = f3(d.b.h.)

Rsig = right sigmoid = fR(Rn, RI, XP, Yr)
Rn = Rsig power = f,(d.b.h.)

RI = Rsig inflection point as a proportion of the range in years from XP+5
to XP, = fg(d.b.h.)

Int = intercept, left edge = fg(d.b.h.)

Rsc = Rsig scalar = ridgetop = f7(d.b.h.)

Lsc = Lsig scalar = ridgetop-Int

Segmental constraints:

Left side; 66 < Yr < XP, discrete values only
Right side; XP < Yr < 71, discrete values only
Either side; 8 < d.b.h. < 18, midpoints of 2-inch d.b.h. classes

only...8, 10, 12, etec.

The model, refitted by least Squares to smoothed mortality percent at 36 control
points on the original data Cross-sections over time resulted in an R? of 0.96. Used
as a goodness-of-fit index, this high R? value attests to the fact that the descriptor
duplicates the objective graph with reasonable accuracy.




EXAMPLE 2
AN ASYMMETRICAL, BELL-SHAPED RIDGE:
THREE SEGMENTS

Quality score (t) was originally described (fig. 4) as an aggregate of 11 planar
regions over flow (F) and stability (S) of gap-graded road materials, a strongly seg-
mented descriptor (Lee, and others 1973, fig. 14). The objective here was to smooth
the figure and minimize the number of segments in the descriptor. Although the problem
is an unusual one, its solution serves admirably to demonstrate descriptor segmentation.

From figure 4, it can be seen that opposite sides of the ridge differ substantially
in slope so that an asymmetrical, flat-topped, bell-shaped curve would be required to
describe the cross-section at any point in S while rounding the junctures of planes.

A relatively simple descriptor alternative involves segmentation of the (S,F)-regions
as shown, with left and right orientation lines. Note that the lines are parallel to
their respective sides of the ridge and lie one unit in F closer to the ridge center.
This permits use of a single, but different, sigmoid cross section to represent and
smooth the corners of each segment, left and right. The sigmoids will peak at their
respective orientation lines and will be functional over a constant distance from them
(left or right as appropriate). The constant will vary by side as needed. Since the
ridge is flat-topped, it will have a value of t = 10 everywhere in the center segment.
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Figure 4.--Quality of gap-graded road materials: segmented planar form.




Then, to this point, we have described a ridge with three segments specified in
terms of S and F: the sigmoidal effect to the left of the left orientation line; the
sigmoidal effect to the right of the right orientation line; and the flat ridge area
between these lines at a value of t = 10.

Finally, a sigmoidal truncation of the front end of this ridge is achieved
through multiplication of all components of the descriptor by an appropriate sigmoid,
changing in value from zero to one within the range 0 < S < 2000, and being applicable
for 0 < S < 5000.

In general terms, we have:

Lsig and Rsig = left- and right-segment sigmoids, respectively

LO, RO = left- and right-orientation lines, respectively

CC = center segment, constant

Tsig = truncator sigmoid

Then
t = Tsig (Lsig + CC + Rsig)
and
Tsig = £(S)
Lsig = f(LO,F)
Rsig = f(RO,F)
LO = £(8S)
RO = £(S)
Limits
For Lsig, LO < F < 28
For Rsig, 0 <F <RO
For CC, LO < F < RO
and, 0 < S < 5000

The final descriptor form is shown in figure 5 along with the original planar form for
comparison. It can be seen that the descriptor does a creditable job of emulating the
planar form while smoothing the corners, all with 3 segments in place of the original
11 segments.
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Figure 5.--Quality of gap-graded road materials: segmented planar and
final descriptor forms.




APPENDIX

Example 1: Specific Mathematical Descriptor
Mort. percent = K(Int + Lsc[Lsig] + Rsc[Rsig])

where

n

K = least squares coefficient = 0.9877

Int = 1 + 0.2321 (d.b.h. - 8)1-63

Rsc = 2.6429 (d.b.h.) - 5,157
Lsc = Rsc - Int
Ln
5 - |yr - xp|
) =S 1 i 1 Ln
T ~ O = (1 = LI)
Lsig =
) ( 1 Ln
] - e \I-1I
20 - d.b.h. 3.9
h 12
XP = 67.65 + 1.2257 e Lo
7w |diph. « 18.8] 2
« 1
: 7
LI = 0.851 - 0.1531 e 0.45
In = 1.5
Rsig = as for Lsig using RI and Rn
RI = 0.752 + 7.8173 x 10-%|d.b.h. - 14]2.8
Rn = 2

Limits
66 = Yr = 71, discrete units only
66 = Yr = XP, for Int, Lsc, Lsig
XP < Yr = 71, for Rsc, Rsig

d.b.h. = 18

o
IA




SUPPLEMENTARY EXPLANATORY DETAIL FOR EXAMPLE 1

Int was estimated from leftward extension, from the ridge, of the mortality trend
indicated by data in each of six 2-inch d.b.h. groups. All six trends reached lower
asymptotes by 1963 and at that point suggested a flat, concave-upward curve over d.b.h.
(fig. 6). This was satisfactorily described using Matchacurve-2, set A-1.
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Hse is simply the height of the ridge above zero and serves as the scalar for the
right-half sigmoids. Rsc is a linear funetion of d.b.h., adopted to represent the
somewhat irregular pattern of ridge values for the six d.b.h. groups (fig. 7). Note
that the ridge line in figure 1 only appears to be sigmoidal by reason of the sigmoidal
change of point-of-peaking in time, with a change in diameter.
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Lsec = (Rsc-Int), and is the scalar for the left-half sigmoids.

XP, the point in time at which the bell-shaped curves peaked, was estimated from
the XP's for the six data-group cross-sections (fig. 8). This curve was estimated to
asymptote at 68.88 and 67.75. A suitable match was found in the sigmoids of Matcha-
curve-1 when the d.b.h. was reversed; namely, transformed to 20-(d.b.h.).
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Lsig specifies the sigmoidal shape of the left side. After transforming Year to
5-[YR—XPT, to create X-values ranging from zero at XP-5, to 5 at XP, the six d.b.h.-
group cross-sections (left halves) were each scaled to 1.0 in X and Y...at critical
points in X. Overlay curves (see Matchacurve-1) were plotted for these cross-sections
(fig. 9). The pattern was one of wider curve crowns near d.b.h. = 14 inches, narrowing
with increasing departure from that d.b.h. This is reflected in the bell-shaped
function for the inflection points, LI. Also, Matchacurve-1 Standards with n = 1.5
were found to represent this curve array with reasonable accuracy, so Ln was set at the
constant, 1.5.

YIYP

Figure 9 X1 XP
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LI, the function for the inflection points, is the dashed line in figure 10, and
represents the inflection points adopted and plotted for each overlay curve. LI re-
flects the width-of-curve-crown trend noted under Lsig and in the text.
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Rsig, RI, and Rn were obtained in a similar fashion. The Year transform again was
5-|Yr-XP% and ranged in value from 5.0 at XP to zero at XP + 5. The right-side cross-
sections were fairly well matched by Standards with n = 2, so Rn = 2. RI showed the
same general widening of curve crown at d.b.h. = 14 inches.
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Example 2: Specific Mathematical Descriptor
If
F > L0, t = Tsig(Lsig)
LO < F < RO, t = 10(Tsig)
F < RO, t = Tsig(Rsig)
where

soil flow

L]
[}

LO

il

8.888 + 0.0017036(S)

RO = 8.404 + 0.00048076(S)

w
n

soil stability

(Lo + 20 - F) . |%2

20
0.23

1

Lsig = 10 e

(6000 - 8) . |®

6000
0.185

1

]
—
I
L]

Isig

|lRo - 11|+ F
11 3
0.30

10 e

Rsig

Limits

0 =8 = 5000
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SUPPLEMENTARY EXPLANATORY DETAIL FOR EXAMPLE 2

Lsig

The left segment of figure 4 has a constant cross-section over F for 1240 < S <
5000, approximated in the descriptor by a sigmoid oriented at F = LO and extending
leftward a distance of 20 units in F. Twenty is about the minimum operational span
for the sigmoids here. At the upper extreme of S, (S = 5000), the left-segment sigmoid
is expected to be completely specified in the range 27 > F > LO, as in figure 5. Set-
ting 28 as the upper level of F within which all left-segment sigmoids must be completely
specified, we turn to the limiting case at S = (. Here LO = 8.888 and the sigmoidal
range must then be at least (28 - 8.888) = 19.112; so, 20 was adopted as the operational
span. Note that a larger span could have been adopted.

The F-scale is reversed to LO+20-F, as shown in figure 11, to associate the largest
value of the sigmoidal span, 20, with the peak of the sigmoid at LO. Scaling control
points from the left cross-section at S = 1240 (fig. 11) to 1.0 in X, (LO+20-F), and Y,
(score, t), and making an overlay curve (see Matchacurve-1), an appropriate sigmoid was
identified from the Standards.
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Figure 11.--t-cross-section over F at 8 = 5000. Note: The cross-sectional shape
of the left segment is constant in the range 1240 < S < 5000; the right segment,
although different in cross-sectional shape, is also constant in shape over the
range 1240 < S < 5000.
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Tsig

From figure 4, the planar ridge truncation ranges from t = 0 at S = 840, to t = 10
at S = 1240. This plane, scaled to 1.0, is matched and smoothed by Tsig, as shown in
figure 12. Note from the Tsig formula specified (p. 13) that the inverted sigmoid to
the left of the truncation plane (with base = 1.0 and peaking at 0, 0) was described
on the' reversed S-axis (6000-S) and subtracted from 1.0 to arrive at Tsig. This
provided a more accurate duplication of the truncator plane than did other sigmoid
alternatives, in this case.

Although a maximum of S = 6000 appears in Tsig, the applicable range is still
limited to S = 5000 based on the original figure (fig. 4).

PLANAR RIDGE
TRUNCATION SCALEDTO 1.0
1.0~
8t / S Tsig
o bf
@ 4l
2l
.0 1 1 A A J
0 840 1240 2000 3000 6000 S)
6000 5160 4760 4000 3000 0 (6000 — S)
Figure 12.--Ridge truncation sigmoid, Tsig.
Rsig

The right segment of figure 4 has a constant cross-section over F for 1240 < S <
5000, approximated in the descriptor by a sigmoid oriented at RO and extending to the
right for a distance of 11 units in F. Eleven is about the minimum operational span
for the right-segment sigmoids. RO ranges from 8.404 at S = 0 to 10.808 at S = 5000.
A range of 11 includes F = zero at both extremes, and so was adopted. The Rsigs were
described as a function of the F-transform |RO-11|+F...as shown in figure 11. Thus,
the maximum value of 11 always occurred at the sigmoidal peak, F = RO, and Rsig
functioned over the range zero to 11 of the F-transform.

The final surface, then, is simply the independent sum of the three contiguous

ridge segments...all truncated at appropriate points in S through multiplication
by the proportional values of Tsig.
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