Measurement of Tree Basal Area & Volume

FOR 1001
Dr. Thom Erdle
Today’s Objectives

- Tree → Stand → Forest
- Basic geometric calculations
- Measurement of tree diameter
- Measurement of tree height
- Determination of:
 - basal area
 - volume
 - biomass & carbon
 - $ value
What? Simply the *cross-sectional area* of a tree stem measured at *breast height* (1.4m)
Tree Basal Area

Why?

- Basal area closely relates to *volume*
- *Easy to* measure & calculate
- Useful measure of *site occupancy*
- Useful to *forecast* future development of stand
Tree Basal Area

How?

Area of a circle

Area = \pi \times (\text{radius})^2

Diameter is twice the radius

Radius = \text{diameter} / 2

Area of circle in terms of diameter is

area = \pi \times (\text{diameter}/2)^2

area = \pi \times \text{diameter}^2 / 4
How?

- Convert diameter of a circle to area of a circle

\[
\text{area} = \pi \times \text{diameter}^2 / 4
\]

\[
\text{Basal area} = \pi \times (\text{DBH})^2 / 4
\]

- But DBH is usually in cm & basal area is usually expressed in square metres

- 10000 cm per square metre

\[
\text{Basal area} = \pi \times (\text{DBH})^2 / (4\times10000)
\]

\[
\text{Basal area} = \pi \times \text{DBH}^2 / 40000
\]

Where: basal area in in m²
DBH is in cm
Tree Basal Area

How?

- Forestry naming & unit convention

 Basal area denoted by “BA”

 Basal area = in \(m^2 \)

 Diameter at breast height = DBH in cm

- Final form for basal area calculation

 \[BA_{(m^2)} = \pi \times DBH_{(cm)}^2 / 40000 \]
Tree Volume Calculation

What?

- Volumetric content of tree
- Volume of different portions of tree (know which one you are talking about)
- *Total* volume (main stem from ground to tip)
- *Merchantable* volume (main stem excluding stump and tip defined to a minimum diameter)
Tree Volume Calculation

What?

Total volume

Merchantable volume

Tip

Stump
Tree Volume Calculation

Why?

- *Product content* and tree *value* are directly related to tree volume
- *Carbon* and *biomass* are directly related to tree volume
Tree Volume Calculation

How?

- Water displacement
- Geometry of solid shape approximating tree stem shape
- Cut stem into sections, measure & sum

Either physically cut or measure sections on uncut stem
Tree Volume Calculation

How?

Geometry of solid shape approximating tree stem shape

g = cross sectional area of base; h = height; v = volume

V =
- cylinder: $1 \times g \times h$
- parabola: $0.5 \times g \times h$
- cone: $0.33 \times g \times h$
- neloid: $0.25 \times g \times h$
Tree Volume Calculation

How?

- Tree form a mix of all these shapes
- Shape changes along tree stem
- So we calculate the form factor using stem analysis
Tree Volume Calculation

How?

- Section tree (either cut or mark)
- Measure each section to calculate volume
- Sum all sections to obtain tree total
- Perform for many trees across range of sizes
Relationship varies somewhat by tree, region and treatment

E.g. for Noonan (Kershaw)

\[V = 0.42 \times BA \times H \]

Where:
- \(V \) = tree volume (m³)
- \(BA \) = tree basal area (m²)
- \(H \) = tree height (m)

Sometimes more complex equations are developed

\[V = D^a \times \left[\frac{H^2}{(H-1.4)} \right]^b \times e^c \]
Tree Volume Calculation

How?

Sometimes tables are constructed that list volume by DBH & height.

<table>
<thead>
<tr>
<th>DBH</th>
<th>Spruce Height (m)</th>
<th>Spruce Volume (m^3)</th>
<th>Fir Height (m)</th>
<th>Fir Volume (m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.2</td>
<td>0.000</td>
<td>2.0</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>4.2</td>
<td>0.003</td>
<td>3.9</td>
<td>0.003</td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>0.009</td>
<td>5.6</td>
<td>0.008</td>
</tr>
<tr>
<td>8</td>
<td>7.6</td>
<td>0.020</td>
<td>7.2</td>
<td>0.019</td>
</tr>
<tr>
<td>10</td>
<td>9.1</td>
<td>0.037</td>
<td>8.6</td>
<td>0.034</td>
</tr>
<tr>
<td>12</td>
<td>10.5</td>
<td>0.060</td>
<td>10.0</td>
<td>0.055</td>
</tr>
<tr>
<td>14</td>
<td>11.8</td>
<td>0.090</td>
<td>11.2</td>
<td>0.082</td>
</tr>
<tr>
<td>16</td>
<td>12.9</td>
<td>0.128</td>
<td>12.4</td>
<td>0.116</td>
</tr>
<tr>
<td>18</td>
<td>14.0</td>
<td>0.173</td>
<td>13.4</td>
<td>0.156</td>
</tr>
<tr>
<td>20</td>
<td>14.9</td>
<td>0.226</td>
<td>14.4</td>
<td>0.203</td>
</tr>
<tr>
<td>22</td>
<td>15.8</td>
<td>0.286</td>
<td>15.3</td>
<td>0.257</td>
</tr>
<tr>
<td>24</td>
<td>16.6</td>
<td>0.355</td>
<td>16.1</td>
<td>0.318</td>
</tr>
</tbody>
</table>
Volume equations allow you to calculate tree *volume* from tree *diameter* and *height*

They can be *complex* and very *accurate*

Rough-and-ready *approximation*

\[V = 0.42 \times g \times h \]

Volume tables allow you to “look up” tree volume from tree diameter and height