Basic Data Concepts

FOR 1001 Dr. Thom Erdle

Today's Objectives

- Data Types (data levels)
- Populations
- Population Parameters (statistical measures)
- Data Quality
- Data Analysis

We will have a data analysis tutorial session as part of Thursday's lab

The nature of data you are recording/observing

Different data types have different characteristics

Not all data are the same

You will be obtaining & using data of different types

- Valid *analysis* varies by data type
- **Effective** *presentation* varies by data type
- Important to know the *differences*

R

Summary Statistics

Analysis

lominal	Frequency or % occurrences No mean	Pie charts Bar graphs	Lowest level Only names are meaningful
Ordinal	Frequency or % occurrences Mean (questionable)	Bar graphs	Adds order meaning to names
atio	Mean Standard Deviation	Bar graphs Scatter plots Time plots	Adds zero so ratios are meaningful

- Name (or category) assigned to element
- Assigned value (name) simply an identifying label
- No quantitative significance
- No implication of order

Examples Species

Soil type

Data Types

Ordinal

- Meaningful order
- Intervals between values not equal
- **Think of as ranks**
- Name (or category) assigned to element but order has meaning (successive values imply directional change)

Tree health

Tree quality grade

Rank in size

Measured (not just classified)

Ratio

Examples

Discrete or continuous

Can't be made finer Finite possibilities

<u>Continuous:</u>

<u>Discrete:</u>

Can be made finer "Infinite" possibilities

Mathematically versatile and powerful

Number of cavity nest trees per hectareMass of carbon in treesTonnes of moose browse per hectareParts per million of suspended solids in water

Populations

- Entire group of "individuals" of a specific category within an area of interest
- Defined by the context of the problem or issue in question

- It is the entity of interest
- Defines what you want to know about
- Governs your data acquisition scheme
- e.g. stands in Noonan forest
 - shade trees on UNB campus
 - salmon in Miramichi River
 - forestry/ENR students at UNB

Measure describing characteristics of a population (set of data)

Governed by the distribution of values across member of the population

What?

- Informative about that population
- Appear in multiple contexts & with great frequency
- Key to answering many questions/problems

What? • Measure describing characteristics of a population (set of data)

Governed by the distribution of values across member of the population

- e.g. wood volume in stands in Noonan Forest
 - # shade trees on UNB campus
 - weight of fish in Miramichi River
 - summer employment income of forestry /ENR students

Central Tendency

Range

Spread

#

trees

Central Tendency

- Describes the "central position" within a set of data
- Measures of the middle location in a set of data

Central Tendency

Central Values

Mean	= ∑ values / # elements
	= 280 / 11
	= 25.5 cm

Mode	= most frequent value	
	= 22 cm	

Median = midpoint value 11.= half values above; half below $\Sigma = 24$ cm

<u>Tree</u>	<u>DBH_{cm}</u>
1.	20
2.	22
3.	22
4.	22
5.	22
6.	24
7.	24
8.	26
9.	28
10.	34
11.	36
$\Sigma = 28$	30

Relates to the variation of values within the population

 Of fundamental importance b/c influences how much sampling is required to achieve desired accuracy in estimate

Populatio	n Parameters	Low variance	<u>Spread</u>
Spre	ad	# trees	High varian DBH
Variance =	average of squared differences from mean value	<u>DBH_{cm}</u> 20 22 24 26	$(Y_i - Y_{mean})^2$ $(20-24)^2 = 16$ $(22-24)^2 = 4$ $(24-24)^2 = 0$ $(26-24)^2 = 4$
Variance =	$\sum (Y_i - Y_{mean})^2 / (n - 1)$	28	$(28-24)^2 = 16$
Standard Dev	viation = SQRT(Variance)	∑ = 120 Mean = 120/5 Mean = 24cm	∑ = 40 Var = 40 / 4 Var = 10cm ² StDev = 3.16cm

Spread

High

variance

Today's Objectives

- Data Types (data levels)
- Populations
- Population Parameters (statistical measures)
- Data Quality
- Data Analysis

We will have a data analysis tutorial session as part of Thursday's lab

What?

How good are my data?

What are the characteristics of the data?

- Critical for determining how much confidence one can place on data
- Identifies potential errors/deficiencies to be guarded against

Bias

Systematic distortion from the actual value

accuracy

个

precision

accuracy precision

 \uparrow

accuracy precision

 \mathbf{v}

 \checkmark

E A

ž

Martin Sunt

s de la

accuracy precision