

FOR 1001 Dr. Thom Erdle

Today's Objectives

- Concept & role of sample plots
- Plot calculations
- Plot establishment

You will establish plots & measure trees to address your *first case study*

Plot is:

An area of land, representative of larger area of land, in which trees or other features are measured.

We apply what we measure in the plot to larger area of land it represents.

Remember, to get meaningful information for a forest, we need to *scale up* from:

tree to stand to forest

Sample plots help us take the step from tree to stand

Tree \rightarrow Stand \rightarrow Forest

- What if the area of interest is:
- □ 100 ha?
- 10 000ha?
- **Even larger?**

Our area is of interest is a stand 1ha in size

How many trees does it contain?

How Used?

- We establish a plot10m X 10m
- □ 100m² = 0.01 ha
- We count 15 trees
 in the 0.01 ha plot 1
- How many trees in the <u>1 ha stand</u>?
- $\frac{15 \text{ trees}}{0.01 \text{ ha}} = \frac{X \text{ trees}}{1.0 \text{ ha}}$

Our area is of interest is a stand 1ha in size

How many trees does it contain?

Sample Plots		Plots 🗖	General Form	IS	
	How Us	ed?	per ha value	plot value	9
				plot size	(ha)
	stand value = per ha value * stand size				
		<u>How Many</u> <u>Trees</u>	<u>How Much</u> <u>Volume</u>		<u>ow Many</u> ags >40cm
plot	value	100 trees	40 m ³	80 tonnes	5 snags
plot	size	0.04 ha	<mark>0.1</mark> ha	0.01 ha	0.5 ha
per	ha value	2500 trees/ha	400 m ³ /ha	8000 tonnes/ha	10 snags/ha
stan	d size	<mark>8.0</mark> ha	20.0 ha	2.0 ha	12.0 ha
stan	d value	20 000 trees	8000 m ³	16000 tonnes	120 snags

Sample Plots		General Forms	
How Used?		per ha value =	plot value
		per na value –	plot size (ha)
scale up factor = 1 divided by plot size			ize
per ha value	= S	cale up factor tim	es plot value

Sample Plots		General Forms	
How Used?		per ha value =	plot value
		per na value –	plot size (ha)
scale up factor = 1 divided by plot size			ize
per ha value	= S	cale up factor tim	es plot value

Sample Plots		General Forms	
How Used?		per ha value =	plot value plot size _(ha)
scale up factor = 1 divided by plot size			

	<u>How Many</u> <u>Trees</u>	
plot value	100 trees	scale-up factor = 1 / 0.04 = 25
plot size	0.04 ha	trees/ha = trees/plot * scale-up factor
per ha value	2500 trees/ha	trees/ha = 100 trees/plot * 25 plots/ha
stand size	<mark>8.0</mark> ha	
stand value	20 000 trees	trees/ha = 2500

Sample Plots		General Forms	
How Used?		per ha value =	plot value plot size (ha)
scale up facto	or = 1	1 divided by plot size	

		Snags >40cm
plot value		5 snags
plot size	scale-up factor = 1 / 0.5 = 2	<mark>0.5</mark> ha
per ha value		10 snags/ha
stand size		12.0 ha
stand value		120 snags

How Many

Remember!

 Conditions in the plot must be representative of the larger area to which sample results will apply

Or here?

Sample Plot

Apply plot results here?

How Established?

Various shapes & forms

- circular
- rectangular or square
- strip
- "unbouded" (observations taken from a point)

How Established?

Choosing size & shape

- Ease of establishment
- Area/perimeter ratio
- "Representativeness"

How Established?

Circular

- Select plot size
- Determine radius

E.g. If we want a **0.01** ha plot, what *radius* to use?

1ha = 10000m² so .01 ha = 100 m²

Area = $pi * r^2$

100m² = pi * r²

r = sqrt (100m²/pi)

r = 5.64m

How Established?

Circular

- Locate and stake plot centre
- Run out correct radius with tape
- Starting with nearest tree
 - Number trees with lumber crayon
 - Number faces plot centre
 - Proceed clockwise
 - Mark with "X" trees outside plot, but within 1.5 m of boundary

- we use *sample plots* to help us *"scale up"* information from *tree* to *stand* to *forest*
- plots must be *representative* of the area to which results are applied
- advantages and disadvantages to different
 plot shapes & sizes (consider carefully before choosing)
- regardless of shape and size, "scaling up" from plot to hectare to stand is the same for all area plots