http://www.gov.mb.ca/conservation/forestry/r enewal/surveys.html#ftgmethods

Sampling Concepts - Part I -

FOR 1001 Dr. Thom Erdle

Objectives – Sampling Concepts

- Introduce key concepts about statistical inference
- Understand relationships between:
 - variability
 - confidence
 - probability
 - sample size
- □ Calculate confidence interval for an estimate
- Determine a sample size to provide estimate that meets desired level of confidence

Topics

- Populations & Parameters
- Measures of Central Tendency
- Sampling & Sampling Strategy Elements
- Calculating Confidence Interval
- **Determining Sample Size**

Population Parameters

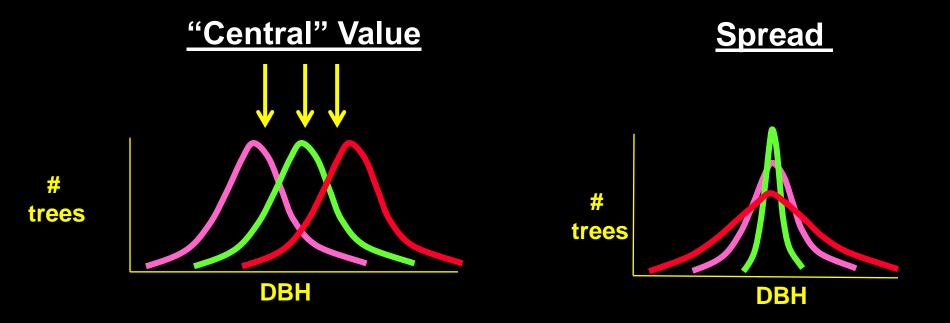
Population – what is it?

- the entire group of "individuals" of a specific category within an area of interest
- defined by the context of the problem or issue in question
 - e.g. stands in Noonan forest
 - shade trees on UNB campus
 - salmon in Miramichi River
 - forestry/ENR students at UNB

Population Parameters

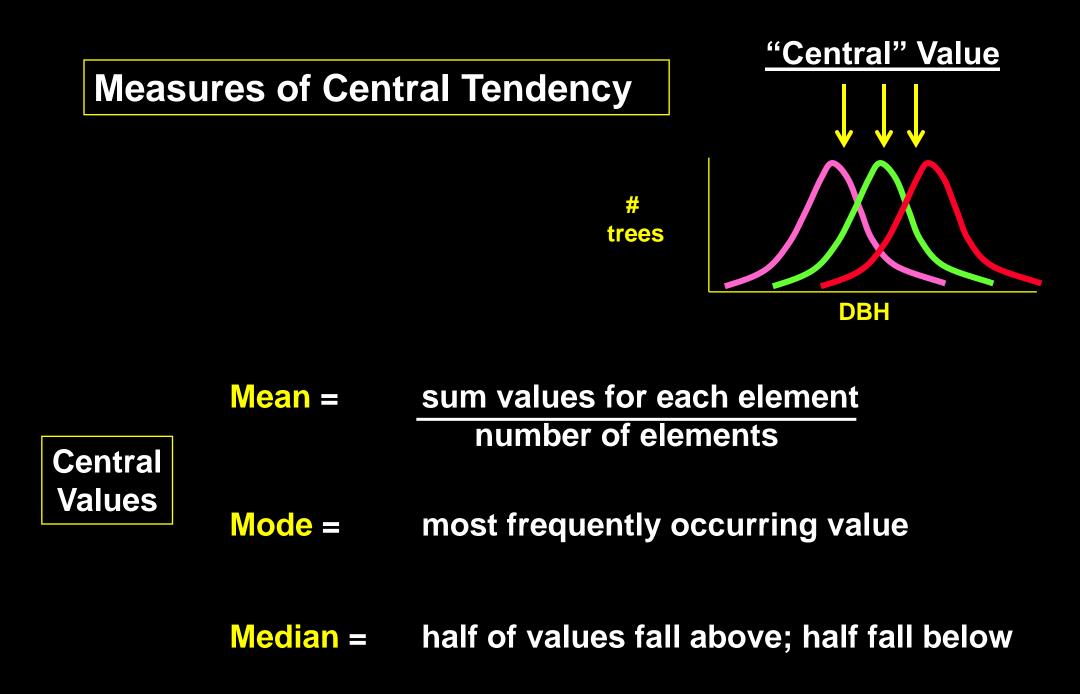
Parameter – what is it?

- a characteristic of the population
- governed by the distribution of values across members of the population


e.g. - wood volume in stands in Noonan Forest

- # shade trees on UNB campus
- weight of fish in Miramichi River
- summer employment income of forestry /ENR students

Population Parameters


Parameter

- often characterized by Measures of Central Tendency
- relate to distribution of values in population elements

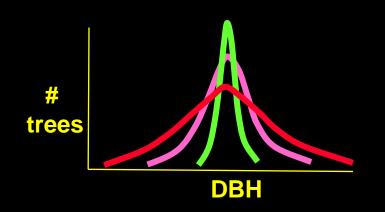
Topics

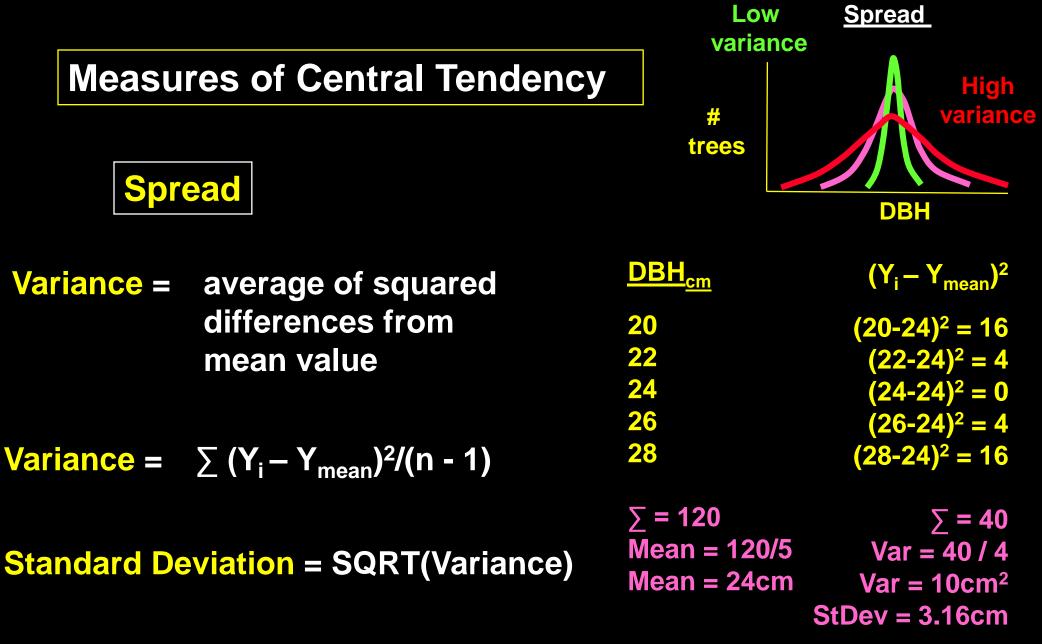
- Populations & Parameters
- Measures of Central Tendency
- Sampling & Sampling Strategy Elements
- Calculating Confidence Interval
- **Determining Sample Size**

Measures of Central Tendency

Central Values

- Mean = ∑ values / # elements = 280 / 11 = 25.5 cm
- Mode = most frequent value = 22 cm
- Median = midpoint value = half values above; half below = 24 cm


Tree	DBH _{cm}
1.	20
2.	22
3.	22
4.	22
5.	22
6 .	24
7.	24
8.	26
9.	28
10.	34
11.	36
Σ=	280


Measures of Central Tendency

...relating to variation of values within population

Spread

Topics

- Populations & Parameters
- Measures of Central Tendency
- Sampling & Sampling Strategy Elements
- Calculating Confidence Interval
- **Determining Sample Size**

If we want to know something about population parameters, what to do?

Observe <u>each</u> element in population

Maximum confidence in findings

Zero sampling error

May be expensive & time consuming

Representativeness guaranteed

No inference necessary

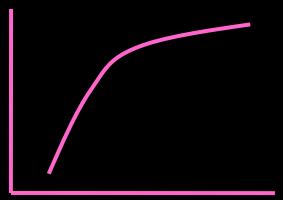
<u>Sample</u>

Observe <u>some</u> elements in population

Confidence = <u>f{sampling strategy,variation}</u>

Some sampling error

Can be <u>cheaper</u> & less time consuming


Representativeness <u>function of</u> <u>sampling</u> design <u>Inference</u> necessary

Sampling

Accuracy

□ Why in forestry & natural res?

- forest/environment is big
- field work is costly

Effort (sample size)

- access can be difficult (in some places)
- diminishing returns
- So, sampling frequently used in forestry & natural resources to estimate population parameters
- Need well-designed sampling strategy to generate desired results
- Low cost is no virtue without quality

Sampling

□ Sampling Strategy

- governs quality of population parameter estimates
- central concern of forest management
- requires *statistical know-how* & familiarity with *basic concepts*

Sampling Strategy

What are the elements?

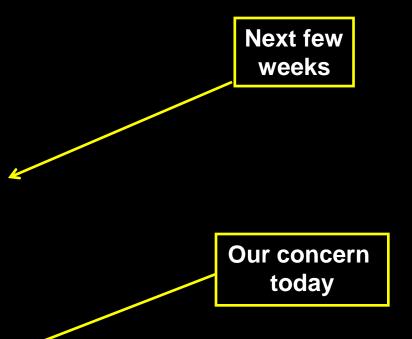
Choice of sampling units

 type of plot
 size of plot

 Allocation of samples across

population of interest

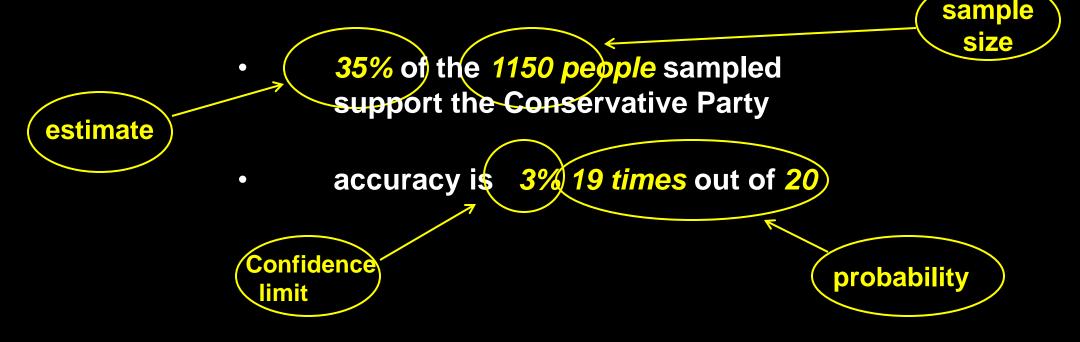
random
systematic
stratified

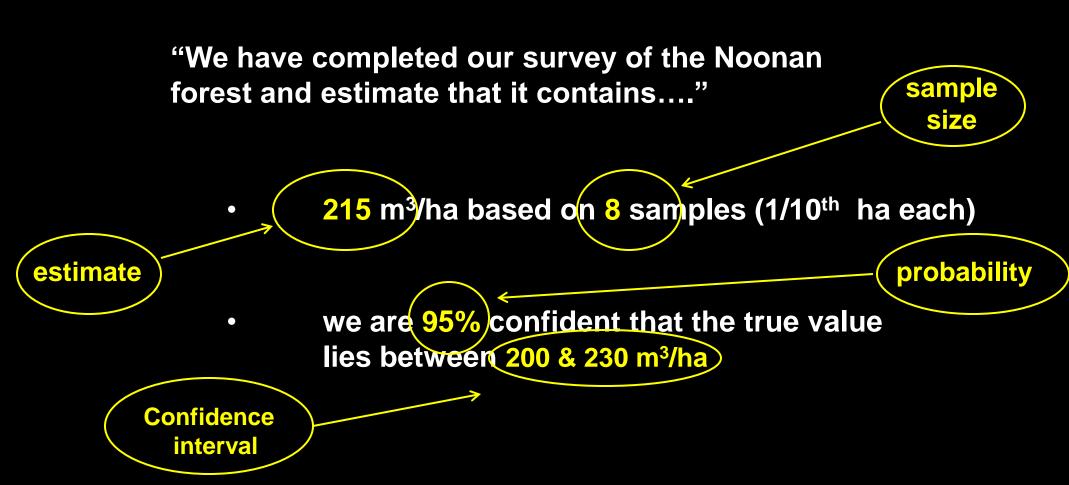

Intensity of sampling

o number of plots (samples)

Observations to record

 \circ what measurements to take & how


□ *Timing* & other considerations


- Sampling can only estimate the population parameter
 - so, how good is the estimate?
 - or, how can we make the estimate good?
 - what governs quality of estimate?
- □ The anatomy of a sample estimate
 - population variability
 - confidence interval
 - probability
 - sample size

An example – something you are likely to hear or read

"The Pulse Market Research Agency has recently conducted a poll of Canadian voters and found that...."

An example – something you are likely to produce

Confidence Interval

- each estimate has an associated *confidence interval*
- the estimate the confidence limits gives the confidence interval
- the true population parameter is deemed to fall within this interval with a certain probability

Probability level

 the probability that the true population value falls within the confidence interval

I estimate the world's population to be.....

Confidence Interval

Between *0* and *10* billion

Between 2 and 8 billion

Between **5** and **7** billion

Between 5.5 and 7.5 billion

Between 6.9 and 7.1 billion

Probability level

Almost certain to be *true(100%*) 99% probability of being true 98% probability of being true 90% probability of being true 75% probablity of being true

Between 6,999,999,999 and 7,000,000,001 billion

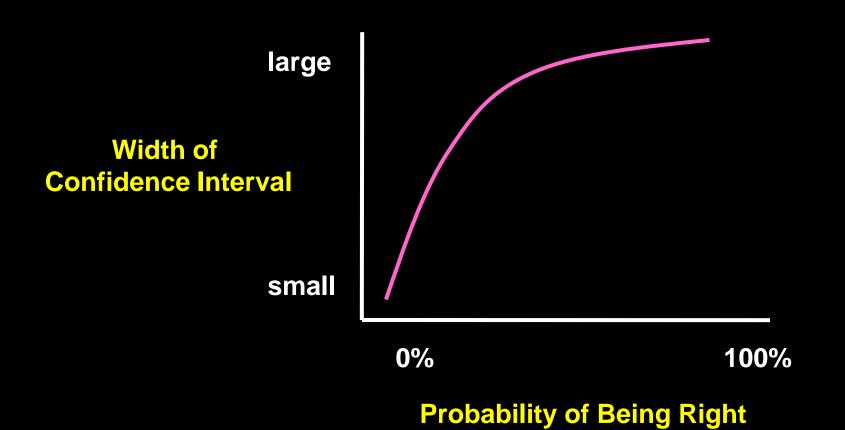
Virtually 0%

I estimate the m³/ha in Noonan stand #2021 to be...

Confidence Interval

Between 0 and 500

Between 100 and 400

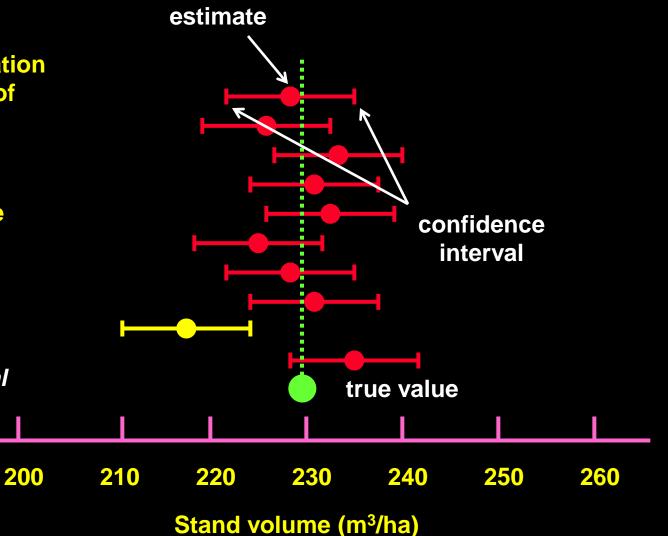

Between 150 and 350

Between **190** and **210**

Between 214 and 215

Probability level

Almost certain to be *true(100%*) 99% probability of being true 90% probability of being true 30% probability of being true <1% probablity of being true



Example : 90% Probability

If we were to estimate the population parameter with 10 different sets of samples.....

.... the true parameter value would fall outside the confidence interval in 1 of those 10 cases

There is a one-in-ten chance that the true parameter value is not within the confidence interval

Topics

- Populations & Parameters
- Measures of Central Tendency
- Sampling & Sampling Strategy Elements
- Calculating Confidence Interval
- Determining Sample Size

Example

□ We want to estimate the density (stems/ha) in a stand

□ We establish five 0.1ha plots and count trees in each

Plot #	Tree Count (stems/plot)	Density (stems/ha)
1	40	400
2	27	270
3	23	230
4	47	470
5	46	460
Avg		366

- We estimate the density to be 366 stems/ha
- □ How good is it?
 - = 366 stems/ha ± 1
 - = 366 stems/ha ± 10
 - = 366 stems/ha ± 100
 - = 366 stems/ha \pm 300

- Bounds placed on estimate
- Function of "standard error"

Standard error = Standard Deviation / sqrt (sample size)

Standard Error=SQRT $[s^2/n (1 - n/N)]$ Where:s=standard deviation1 - n/N =finite population correctionN=population sizen=sample size

But n/N is usually small so generally omit

Standard Error = SQRT $(s^2/n) = s / sqrt(n)$

Standard Error Example

Variance = $\sum (400-366)^2 + (270-366)^2 \dots / (5-1)$

Plot #	Tree Count (stems/plot)	Density (stems/ha)
1	40	400
2	27	270
3	23	230
4	47	470
5	46	460
Avg		366

Variance = 12130 (stems/ha)² Standard Deviation = 110.1 stems/ha Standard error of mean = 110.1 / sqrt(5) = 49.2 stems/ha Standard error of mean (what influences it?) • decreases as variation decreases • decreases as # samples increases

Standard Error = SQRT $(s^2/n) = s / sqrt(n)$

Confidence Interval

Confidence interval = Mean ± **Confidence limits**

Confidence interval = mean ± Standard Error * t (@ chosen probability & n-1 df)

Confidence Limits

Confidence limits = Standard Error * t (@ chosen probability & n-1 df)

 t - value
 Function of: chosen probability degrees of freedom (sample size minus 1) draw from statistical 't' table

Standard Error Example

Variance = $\sum (400-366)^2 + (270-366)^2 \dots / (5-1)$

Plot #	Tree Count (stems/plot)	Density (stems/ha)	Variance = $12130 (stems/ha)^2$	
1	40	400	Standard Deviation = 110.1 stems/ha	
2	27	270	Standard error of mean	
3	23	230	Standard en or or mean	
4	47	470	= 110.1 / sqrt(5) = 49.2 stems/ha	
5	46	460		
Avg		366	Standard error of mean	

o decreases as variation decreases

o decreases as # samples increases

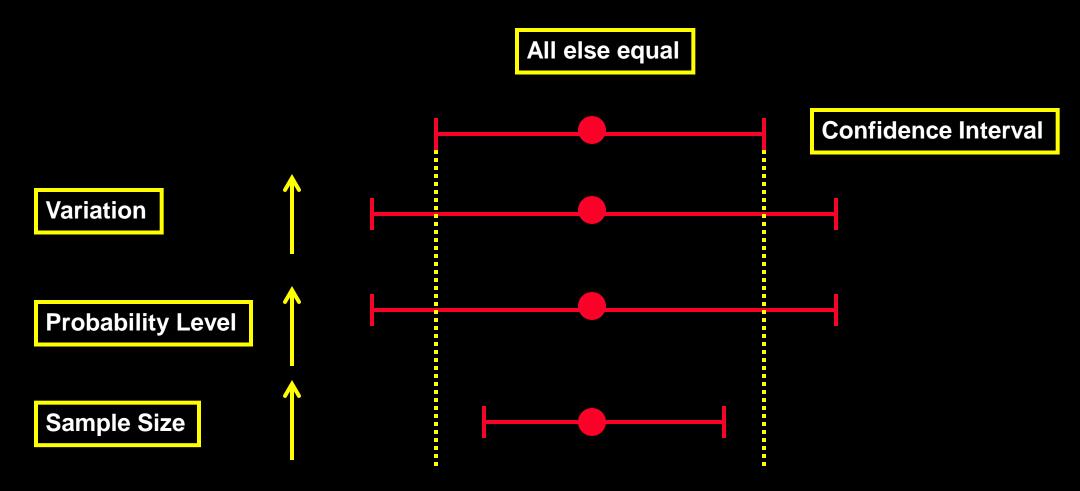
Confidence Interval

Confidence interval = Mean ± Confidence limits Estimate of Density = 366 stems/ha ± Confidence limits Estimate of Density = 366 stems/ha ± 137 = 229 to 503 stems/ha

Confidence Limit

Confidence limit = Standard Error * t (@ chosen probability & n-1 df) Confidence limit = 49.2 * t (95% probability & 4 df) Confidence limit = 49.2 * 2.78 Confidence limit = 137 stems/ha

□ t - value


't-value' for 95% probability & 4 degrees of freedom = 2.78

- □ Interpretation of findings
- □ From these sample results we can say.....

Plot #	Tree Count (stems/plot)	Density (stems/ha)
1	40	400
2	27	270
3	23	230
4	47	470
5	46	460
Avg		366

- We are 95% confident that that true density in the sampled stand is between 229 and 503 stems per ha
- There is only one chance out of 20 (thus 95% confidence) that the true density in the sampled stand is between 229 and 503 stems per ha

What happens to confidence interval when variation, probability level, and sample size change?

