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Spatially Correlated Stand Structures: 17 

A Simulation Approach using Copulas 18 

ABSTRACT 19 

In this paper, we propose a simple approach that is capable of generating multispecies 20 

stand structures.  Based on the method of copulas (Genest and MacKay 1986, Am. Stat. 40:280-21 

283), we utilize a normal copula to simulate spatially correlated stand structures. Species 22 

composition, diameter, height, and crown ratio distributions of each species, and their correlation 23 

with underlying spatial patterns are all controlled by user inputs.  Example data sets are used to 24 

demonstrate how to estimate required parameters and to compare simulated spatial structures 25 

with observed spatial structures. 26 

1 I
TRODUCTIO
 27 

 Stand structure can be defined as the species composition, size and spatial distribution of 28 

trees and other vegetation within a forest stand (Husch et al. 2003).  In addition to influencing 29 

growth of individual trees (Garcia 2006, Eerikäinen et al. 2007, Fox et al. 2007a, 2007b), stand 30 

structure has been shown to influence a number of biotic and abiotic processes within forest 31 

stands  (Oliver and Larson 1996).  Silviculture activities, such as thinning, impact stand structure 32 

(Bailey and Tappeiner 1998), and, as a result, influence wildlife populations (Harrington and 33 

Tappeiner 2007, Smith et al. 2008, Yamaura et al. 2008), stand dynamics (Saunders and Wagner 34 

2008), tree regeneration dynamics (Getzin et al. 2008), and understory vegetation (Kembel and 35 

Dale 2006, Gilliam 2007).   36 

 The past decade has seen a rapid evolution in individual tree growth and yield models.  It 37 

is generally acknowledged that spatial stand structure is one of the main driving forces behind 38 

growth processes, and that stand growth, in return, influences structural composition of 39 



woodlands (Pommerening 2006).  Several process based models and hybrid models have 40 

emerged, and many of these models require spatial data including maps of individual tree 41 

locations (e.g., Pretzsch 1992, Pacala et al. 1993, Courbaud 1995).   42 

 Initialization and testing projections of such models require adequate descriptions of 43 

spatial distribution of trees in stands (Pukkala 1988).  Collection of such data is generally time 44 

consuming and expensive; therefore, very few datasets exists.  As a result, several mechanisms 45 

for generating spatial data have been proposed (e.g., Stoyan and Penttinen 2000, Valentine et al. 46 

2000, Kokkila et al. 2002).  Many growth models that require spatial data are highly sensitive to 47 

initial stand structure  (Valentine et al. 2000, Goreaud et al. 2004, 2006); therefore, it is 48 

necessary to have stand structure generators capable of simulating realistic patterns of species 49 

composition and spatial and size distribution patterns  (Pretzsch 1997).   50 

2 EXISTI
G APPROACHES 51 

 Most approaches, such as those of Valentine et al. (2000) and Kokkila et al. (2002), start 52 

with a two-dimensional Poisson point process.  Tree locations are generated using one of several 53 

point process algorithms (e.g., Penridge 1986, Baddeley and Turner 2008).  Depending on the 54 

algorithm and parameter values, point patterns can vary from regular lattice processes 55 

representing a single species, even-aged plantation to a highly clustered pattern as might be 56 

found in a mixed species, uneven-aged stand.  Some algorithms have the capability of 57 

incorporating spatial inhomogeneity (Baddeley and Turner 2008). 58 

 Once tree locations (points in the point process) are determined, tree size and species 59 

attributes are assigned.  In some systems, this is done independently of the point pattern (e.g., Ek 60 

and Monserud 1974). This approach ignores competitive interactions between individual trees 61 

that greatly influence observed stand structure patterns (Valentine et al. 2000, Kokkila et al. 62 



2002, Goreaud et al. 2004). Stand structures generated using such processes are often unrealistic 63 

(Valentine et al. 2000, Kokkila et al. 2002), and can influence long-term growth projections 64 

(Goreaud et al. 2006). 65 

 To avoid this problem, Valentine et al. (2000) utilized a multistep process to generate 66 

initial stand structures used in the AMORPHYS model.  In the first step, tree locations are 67 

generated. Diameters are then sampled from a target distribution and assigned randomly to the 68 

tree locations. The height of each model tree is then calculated from its assigned diameter and 69 

distances to its neighbors.  Next, crown length of each tree is calculated from its height and 70 

distances to its neighbors.  Finally, diameter is recalculated based on height and crown length.  71 

While this resulting process produces realistic stand structures, the resulting diameter distribution 72 

may deviate from the target distribution as a result of the recalculation step and require re-73 

simulation (Valentine et al. 2000). 74 

 An alternative approach is to use a marked point process model (Penttinen et al. 1992, 75 

Mateu et al. 1998).  In a marked point process model, points are tree locations in a Cartesian 76 

coordinate system, and marks are qualitative characteristics such as tree species, or quantitative 77 

characteristics such as stem diameter or height (Penttinen et al. 1992).  Two correlation functions 78 

characterize marked point processes (Penttinen et al. 1992): a pair correlation function which 79 

characterizes variability within the system of tree locations; and a mark correlation function 80 

which characterizes relationships between different sets of trees (marks) conditional on a 81 

distance function.    82 

 Penttinen et al. (1992) provide excellent examples of the application of marked point 83 

processes applied to modeling stand structure.  Pommerening et al. (2000) and Mateu et al. 84 

(1998) demonstrate the use of marked Gibbs processes to model forest stand structures and 85 



discuss how these might be used to simulate forest stand structure.  Kokkila et al. (2002) 86 

developed a stand structure simulator building upon Penttinen et al.’s (1992), Pommerening et al. 87 

(2000), Mateu et al.’s (1998), and others’ work.  Kokkila et al. (2002) combine marked Gibbs 88 

processes with Markov chain Monte Carlo simulation to produce a flexible stand structure 89 

simulator.  In addition to the pair and mark correlation functions, they incorporate an additional 90 

site potential function which provides additional control on the spatial distribution of trees within 91 

simulated stands.  92 

While these methods are able to generate structures that statistically resemble example 93 

data, no general methods for estimating the parameters required to initialize the simulators are 94 

presented (however, see Mateu et al. 1998 and Pommerening et al. 2000). In this paper we 95 

present a new approach based on the methods of copulas (Genest and MacKay 1986) and 96 

develop a simulation system in R (R Development Core Team 2009). 97 

3 MODELLI
G APPROACH 98 

Standard Normal copulas are utilized to transform random normal variables into 99 

correlated variables. Copulas, though widely utilized in several other fields (Accioly and 100 

Chiyoshi 2004, Yan 2007), are not very widely known, or at least not widely utilized, in forestry 101 

and natural resource management.  102 

A copula is a multivariate distribution whose marginals are all uniform over (0, 1). For a 103 

p-dimensional random vector U on the unit cube, a copula C is: 104 

( ) ( )pupUuUpuuC ≤≤= ,,11Pr,,1 LL . 105 

Because any continuous random variable can be transformed to be uniform over (0, 1) by its 106 

probability integral transformation, copulas can be used to provide multivariate dependence 107 

independent of marginal distributions (Genest and MacKay 1986, Nelsen 2006, Yan 2007).  For 108 



a complete treatment of the theory and basis of copulas see Nelsen (2006) and for a more 109 

descriptive treatment see Genest and MacKay(1986).  110 

 The basis of our approach assumes there is a correlation between a tree’s characteristics 111 

(dbh, total height, and crown ratio) and the area available to the tree (Mitchell 1975, Ford and 112 

Diggle 1981, Nance et al. 1988, Valentine et al. 2000).  A spatial point process (described below) 113 

is used to simulate n tree locations, and we use the polygon areas of a Voronoi tessellation based 114 

on point locations generated from a spatial process to define available polygon area (apa).  115 

Available polygon areas are standardized : 116 

( ) ( ) ( )12
−−−= ∑ napaapaapaapaapa
 , 117 

 and correlated with vectors of random Normal variables via Wang’s (1998) standard Normal 118 

copula algorithm as follows: 119 

1) Specify the matrix of partial correlations between available polygon area, diameter and 120 

height: 121 
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 122 

2) Obtain the upper diagonal matrix [A] such that AA′=Σ .  We obtain this using 123 

Choleski’s decomposition (Andersen et al. 1999) in R. 124 

3) Based on the number of points, n, generated with the spatial point process, generate three 125 

random standard Normal ( 
(0,1) ) vectors ( dbh
 , ht
 , cr
 ) of length n.  The vectors 126 

are column bound with apa
 to form an augmented matrix, M: 127 

[ ]cr
ht
dbh
apa
M = . 128 



4) The columns of M are then correlated using A, the upper diagonal decomposition of Σ : 129 

AMZ ⋅= . 130 

 Because of the structure of A, the first column of M, corresponding to apa
 , remains 131 

unchanged, and dbh
 , ht
 , and cr
 are correlated both with the underlying spatial 132 

pattern and the dbh-height-crown ratio relationships.  133 

5) The Normal margins are stripped by applying the inverse cumulative Normal probability 134 

distribution: 135 

( ) ( ) ( )



 −−−= htZdbhZapaZU

1Φ1Φ1Φ . 136 

 U is a standard Normal copula (Wang 1998). 137 

6) The correlated size-spatial data are then obtained by applying the appropriate cumulative 138 

margin distribution functions, ( )iuiF , to the columns of U.  For apa, the cumulative 139 

function is the inverse of the standardization formula, or simply the original Voronoi 140 

polygon areas.  The marginal distribution functions for diameter, height and crown ratio 141 

are described below. 142 

3.1 Spatial Models 143 

 We utilize two spatial processes: a Lattice Process and a Thomas Process.  The lattice 144 

process is used to simulate plantation spacing and is implemented in a custom function in R (R 145 

Development Core Team 2009), rlattice.  This function utilizes the rlinegrid function (Baddeley 146 

and Turner 2008).  Angles for the x-oriented lines and y-oriented lines are specified.  The x-147 

angle and y-angle must be of opposite sign and between 0 and 90 degrees to insure that lines 148 

intersect.  The desired density (number of trees within the stand) and the xy-ratio must also be 149 

specified.  The stand area, density and xy-ratio define the spacing of the x and y lines.  The xy-150 



ratio specifies the relative spacing of x lines versus y lines and if not equal to 1 will result in 151 

rectangular spacing. The rlinegrid function is used to generate a set of x-lines based on x-angle 152 

and x-spacing and a set of y-lines based on y-angle and y-spacing.  The intersections of the two 153 

sets of lines define the lattice points.  Random variation is added using the jitter function, with a 154 

jitter-factor parameter that defines how much random variation about the lattice intersection 155 

exists. Using a jitter-factor greater than 0 is the only method to add inhomogeneity into the 156 

lattice process. Examples of a lattice process with and without jittering are shown in figures 1A 157 

and 1B.   158 

 The Thomas process simulates clustering, and utilizes the rThomas function which 159 

implements a realization of a Thomas cluster process (Baddeley and Turner 2008).  As with the 160 

lattice process, the desired density must be specified. Density is then used to calculate the 161 

kappa parameter (intensity of the parent process) for the rThomas function based on the stand 162 

area and expected number of points per cluster parent (mu).  The expected number of points per 163 

parent (mu) and the standard deviation of displacement about parents (sigma) determine the 164 

number of points and spatial extent of each cluster.  By controlling mu and sigma, the degree of 165 

clustering in the spatial process is controlled.  Inhomogeneity can be simulated by specifying the 166 

name of an R pixel image (object class im) for mu rather than a numeric value (see the help 167 

pages for rThomas for examples of creating pixel images). Figures 1C and 1D illustrate a 168 

Thomas process with a low level of clustering and an inhomogeneous Thomas process with high 169 

density toward the center and decreasing density toward the edges. 170 

After the point process is generated, the Voronoi functions provided in the tripack 171 

package (Gebhardt 2009) are utilized.  The voronoi.mosaic function is run to generate the 172 

Voronoi polygons and the voronoi.area function is used to calculate the area of each Voronoi 173 



polygon which is is used as our estimate of available polygon area (apa) for each tree.  Boundary 174 

points are torused by default so that edge points have bounded Voronoi polygons. The Voronoi 175 

object returned by the voronoi.mosaic function forms the base of the data frame used to store tree 176 

characteristics.  177 

3.2 Species – Size Distributions 178 

 Diameter and height distributions are specified using mixture Weibull distributions (Liu 179 

et al. 2002, Zhang and Liu 2006), and crown ratio is specified using a mixture four-parameter 180 

Beta distribution.  A mixture distribution is defined as a frequency distribution made up of two 181 

or more component distributions.  The distribution of the i
th

 individual component is described 182 

by a specific probability density function (pdf), ( )xif . Then the general pdf, ( )xf  for the mixture 183 

distribution is expressed as: 184 

( ) ( ) ( ) ( ) ( )xkfkpxfpxfp
k

i

xifipxf +++=∑
=

= L2211
1

, 185 

where ip = the probability of belonging to component i. In this case, ip is derived from species 186 

composition and ( )xif  are species-specific distributions.    187 

Species composition can be specified in a number of ways including percentiles, 188 

quantiles, or actual densities of each species.  During the structure simulation process, the 189 

specified composition is converted into a frequency distribution ( ip  ) and used to randomly 190 

assign species to each tree (point). 191 

 For diameter, the inverse cumulative two-parameter Weibull distribution function is used 192 

to obtain values: 193 

( )[ ]( )icuibiD /11ln −−= , 194 



where iD is diameter of the i
th

 species corresponding to cumulative probability u; u is a 195 

cumulative probability obtained from a standard Normal copula; ib is a species-specific Weibull 196 

scale parameter; and ic is a species-specific Weibull shape parameter. Species-specific two-197 

parameter Weibull distributions were used for simulating dbh because of the flexibility of the 198 

Weibull distribution, wide application in forestry, and readily available methods for estimating 199 

the parameters (Bailey and Dell 1973, Hyink and Moser 1983, Little 1983, Robinson 2004).  200 

 A modified three-parameter reverse Weibull distribution (Robinson 2004) was chosen for 201 

the species-specific height distributions.  The cumulative three-parameter Weibull distribution is 202 

given by: 203 

( )

ic

i

i

b

Ha

eHhiF












 −
−

=≤
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 204 

where, ia  is a species-specific maximum height ( )BHH −)max( ; *
ib is a species-specific scale 205 

parameter; and ic is a species-specific shape parameter.  The scale parameter, *
ib , is defined in 206 

reverse from the maximum, ia , and would be interpreted as distance below maximum height.  207 

BH is the height at which diameter is measured, typically referred to as breast height (1.3 m in 208 

metric and 4.5 ft in Imperial). In order to make the scale parameter interpretable in terms of tree 209 

height, we use ibiaib −=* . The inverse cumulative distribution function for the modified 210 

reverse Weibull becomes: 211 

( ) ( )[ ]( )icuiaibiaBHiH 1ln−−++= . 212 



Inclusion of BH insures that no tree is shorter than the height at which diameter is measured. 213 

Like the two parameter Weibull distribution, parameter estimation for the three-parameter 214 

reverse Weibull is relatively straightforward (Robinson 2004). 215 

 For crown ratio, CR, a 4-parameter Beta distribution (Johnson et al. 1995 pp. 210 - 275) 216 

is used. The pdf for the four parameter Beta distribution is given by: 217 
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where α and β are the Beta shape parameters, ξ is the minimum crown ratio, λ is the maximum 219 

crown ratio, ( )•Γ is the gamma function, and CR is the observed crown ratio. Simulated crown 220 

ratios are obtained using the rbeta function in R using the correlated U(0,1)’s from the Normal 221 

copula. The rbeta function is a two parameter Beta distribution and returns a random variable, Z, 222 

between 0 and 1.  Z is transformed into crown ratio using: 223 

( )ξλξ −⋅+= ZCR . 224 

The beta  parameters are readily estimated using the method of moments or maximum likelihood 225 

methods (Johnson et al. 1995 pp. 210 - 275). 226 

 The mixture distributions are simulated using the following algorithm: 227 

1) For the n points generated in the spatial process, species is assigned randomly based on a 228 

weighted probability as defined by species composition. 229 

2) Once species are assigned, then the species-specific distribution parameters are used to 230 

calculate diameter, height, and crown ratio using the correlated U(0,1)’s from the 231 

standard Normal copula as cumulative probabilities . 232 

The algorithm is implemented in a custom R function q.mixed.   233 

4 THE STA
D GE
ERATOR 234 



The stand generator is developed in the R statistical package (R Development Core Team 235 

2009) and is implemented in a custom R function stand.generate.  We utilize three contributed 236 

packages: spatstat (Baddeley and Turner 2008); tripack (Gebhardt 2009); and tcltk (Dalgaard 237 

2001).  The required inputs, structure generation, and visualization are controlled through a 238 

series of input windows built using the tcl/tk interface within R version 2.10.1.    239 

 The stand generator starts with a main menu window (Figure 2A).  The input is divided 240 

into three components: Spatial; Species; and Correlation.  The Spatial window (Figs. 2B and 2C) 241 

allows users to specify spatial information such as dimensions of the stand, desired density, and 242 

underlying spatial models.  Currently, only rectangular stand areas are supported. Points are 243 

torused around the bounding box so that tree locations near the edge will have complete Voronoi 244 

polygons.  Torusing can be turned off; however, the functions used to calculate the Voronoi 245 

polygon areas delete edge points with unbounded Voronoi polygons.   246 

Species composition, diameter, height and crown ratio distribution parameters are 247 

specified in the Species window (Fig. 2D). Currently the system allows up to 10 species to be 248 

specified.  The Correlation window (Fig. 2E) allows the user to specify desired correlations 249 

between available tree area, diameter, height, and crown ratio.  250 

When the Generate button is pressed, the required inputs are used to generate the spatial 251 

processes, the voronoi polygon areas, and the trees’ species-size distributions. The output is 252 

stored in a temporary data frame named temp.Trees. Each time Generate is clicked, temp.Trees is 253 

over written; therefore, if a user wishes to save results, temp.Trees must be save to a new file 254 

before Generate is reclicked.  The Visualization window (Fig. 2F) writes an external Stand 255 

Visualization System (McGaughey 1997) compatible file and runs SVS (SVS must be installed 256 

on the computer) which displays the generated stand structure (Fig. 2G).   257 



The R code for the stand generator is available at 258 

http://ifmlab.for.unb.ca/People/Kershaw. The stand generator will run on all platforms supported 259 

by R; however, the visualization step only runs on Windows-based platforms since it utilizes the 260 

stand visualization system which is a Windows-based application. 261 

5 EXAMPLES 262 

 Data from two different studies are used to demonstrate parameter estimation and test 263 

simulation results. The first data set is a 4 ha mapped longleaf pine (Pinus palustris Mill.) stand 264 

(Platt et al. 1988) consisting of 584 trees. Only diameter at breast height (DBH) and tree 265 

locations were measured in this dataset. Total height was predicted using the height – diameter 266 

equation found in Shaw and Long (2007).  Random error, sampled from a Normal distribution 267 

and correlated with available polygon area was added to the predicted heights. Crown ratio was 268 

predicted using the crown ratio equation by Acharya (2006)and random error based on the root 269 

mean square error was added to the predicted crown ratios from Acharya (2006) so that the 270 

resulting predicted crown ratios were correlated with available polygon area. Random errors 271 

were added to predicted heights and crown ratios to both add a degree of spatial correlation to 272 

the predicted data and reduce correlations within tree parameters. The resulting individual tree 273 

summary statistics for this dataset are shown in table 1. 274 

The second dataset is a 50 m by 50 m mapped plot located in a mixed species Acadian 275 

Forest stand in central New Brunswick.  Wooden stakes were surveyed and placed in the ground 276 

on a 10 m by 10 m grid. Distance (nearest .01 m) from two adjacent stakes were measured to the 277 

face of each tree in each 10m by 10 m block and triangulation, based on side-side-side geometry, 278 

was used to determine the xy coordinates of each tree. Tree species was noted, and dbh (nearest 279 

0.1 cm) was measured with a diameter tape, and height (nearest 0.1 m) and height to crown base 280 



(nearest 0.1 m) were measured with an Optilogic 800LH hypsometer (Opti-Logic Corporation, 281 

Tullahoma, TN). There were nine different species in this example: balsam fir (Abies balsamea 282 

(L.) Mill.); spruce (mostly black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) with 283 

some red spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.); eastern cedar (Thuja 284 

occidentalis L.); eastern hemlock (Tsuga canadensis (L.) Carrière); red maple (Acer rubrum L.); 285 

white birch (Betula papyrifera Marsh.); yellow birch (Betula alleghaniensis Britton); white ash 286 

(Fraxinus americana L.); and American mountain-ash (Sorbus americana Marsh.).The 287 

individual tree summary statistics by species for this dataset are shown in table 1. 288 

5.1 Parameter Estimation 289 

Thomas spatial processes were used to model spatial locations for both example datasets. 290 

Parameters for the Thomas process were estimated using the procedure described by Møller and 291 

Waagepetersen (2003 pp. 192 - 197) and Waagepetersen (2008)  and implemented in the R 292 

function thomas.estK.  The current version of the stand structure generator only allows a single 293 

spatial process for the entire stand; therefore, only a single process was estimated for the mixed 294 

species Acadian Forest dataset. The estimated parameters for the Thomas process are shown in 295 

table 2. 296 

Maximum likelihood estimates of the Weibull shape and scale parameters for the 297 

diameter and height distributions were estimated using a modification of Robinson’s (2004) 298 

algorithm. The minimum measured diameter (2.0 cm dbh for the Longleaf Pine dataset and 8.0 299 

cm dbh for the Acadian Forest dataset) were used as the truncation points for the two-parameter 300 

left-truncated Weibull distribution (Table 3) and the maximum observed height (plus 0.1 m) for 301 

each species was used as the location parameter in the three-parameter reverse Weibull 302 

distribution (Table 4). The minimum and maximum crown ratios were used as the bounds of the 303 



four parameter Beta distribution. The mean and variance of crown ratio was calculated and 304 

moment-based parameter recovery used to estimate the two Beta shape parameters (Table 5). 305 

The longleaf pine data were distinctly bimodal in the dbh and height distributions; therefore, the 306 

data were divided into overstory trees (trees > 24 cm dbh) and understory trees (trees < 24 cm 307 

dbh). 308 

The correlation matrix used in the standard Normal copula is the matrix of partial 309 

correlations between available polygon area and the tree characteristics. Because the marginal 310 

distributions are neither Normal nor the same distribution, we used Spearman’s rank correlation 311 

coefficient (Zar 1999 pp. 395-398) rather than Pearson’s correction coefficient (Table 6). 312 

5.2 Assessment of Simulated Stand Structures 313 

Fifty simulated stand structures were generated using the estimated parameters from each 314 

example dataset. The simulation results were compared to the observed results using the mark 315 

correlation coefficient of Stoyan and Stoyan (1994 pp. 262 - 266) as implemented in the R 316 

function markcorr. Observed and simulated mark correlations versus neighborhood radius are 317 

shown in figure 3.  While the average mark correlations from the simulated stand structures were 318 

smoother than observed correlations, individual simulations often produced local peaks at or near 319 

the same spatial scales as the observed data. With the exception of the shorter neighborhood 320 

radii, the range of correlations from the simulated data included the observed correlations. This 321 

was especially obvious in the Longleaf Pine dataset (Fig. 3A). The smaller range of simulated 322 

variability observed in the height (Fig. 3C) and crown ratio (Fig. 3E) in the Longleaf Pine dataset 323 

was the result of the high correlations with dbh (Table 6) resulting from the prediction of the 324 

these variables using dbh.  325 

6 DISCUSSIO
 A
D CO
CLUSIO
S 326 



 The stand structure generator developed in this paper is a simple and efficient method to 327 

simulate realistic stand structures. The distributions used to simulate the tree attributes are 328 

distributions commonly used in forestry research. The parameters of these distributions are easily 329 

estimated from observed data via maximum likelihood methods or moment-based parameter 330 

recovery methods. Moment-based parameter recovery methods are especially useful when only 331 

stand-level summaries are available (Hyink and Moser 1983). Any distribution could be 332 

substituted for those we chose by modifying the input menus and inverse cumulative distribution 333 

functions. 334 

 The use of a Normal copula (Wang 1998) provides an intuitive and fast method for 335 

generating the desired spatial dependency.  Copulae are applied in many different fields to model 336 

complex dependencies (Accioly and Chiyoshi 2004). The critical assumption in the application 337 

present in this paper is that available polygon area provides the basic measure of spatial 338 

dependency.  The available polygon area was proposed by Nance et al. (1988).  Here we use 339 

Voronoi polygons which are tessellations of the stand area based on perpendicular bisectors of a 340 

tree and its immediate neighbors (Bowyer 1981). Nance et al. (1988) proposed weighted 341 

polygons, where the division of area was based upon a weighted tree size such that the bisecting 342 

line is located further away from the larger tree. This concept is the basis for many distance-343 

dependent measures of competition (Tomé and Burkhart 1989, Stage and Ledermann 2008). 344 

While we do not produce weighted polygon areas, the copula produces effects similar such that 345 

larger trees tend to be located in larger polygons (assuming the correlation coefficient is 346 

positive). 347 

 A limitation to the copula approach is that all species have the same spatial and intra-tree 348 

level correlation coefficients. The system proposed by Valentine et al. (2000) has similar 349 



limitations; however, systems based on Gibbs processes can have “repulsive potentials” that vary 350 

by species producing spatial patterns that vary by species (Kokkila et al. 2002). The advantage of 351 

the copula approach over these other approaches is that trees do not have to be spatially shifted 352 

based on potentials (Kokkila et al. 2002, Goreaud et al. 2004) or have tree attributes re-simulated 353 

to achieve the desired tree and or spatial distributions (Valentine et al. 2000).  Eliminating the 354 

need for shifting or re-simulating distributions greatly increases the computational efficiency of 355 

our system relative to other systems. Further, the use of the correlation structure to determine the 356 

tree attributes (ie, dbh, height, and crown ratio) enables simulation of greater levels of variability 357 

and more realistic stand structures than predictive systems that often result in lower variation and 358 

greater ordering of tree attributes (ie, largest dbh trees tend to be the tallest, etc.).  359 
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 510 

Table 1. Mean individual tree characteristics by species for the Longleaf Pine and Acadian 511 

Forest example datasets. Number of observations appear below species code, and range is shown 512 

in parentheses. Height and crown ratio are simulated for the longleaf pine data. 513 

Species
1 

Parameter 

 DBH (cm)  Height (m)  Crown Ratio  Tree Area (m
2
) 

 Mean Std. Dev.  Mean Std. Dev.  Mean Std. Dev.  Mean Std. Dev. 

-- Longleaf Pine Dataset -- 

LP 26.8 18.33  18.5 9.66   0.53 0.025  68.49 61.446 

  n=584 (2.0, 75.9)  (1.3, 39.9)  (0.50, 0.73)  (0.52, 407.88) 

-- Acadian Forest Dataset -- 

BF 12.4 3.53  11.5 3.39  0.66 0.181  10.59 4.667 

  n=42 (8.1, 23.3)  (6.4, 18.5)  (0.17, 0.92)  (3.57, 23.01) 

SP 22.7 8.49  17.2 4.63  0.66 0.137  10.43 4.610 

  n=60 (9.0, 43.9)  (4.7, 24.3)  (0.30, 0.98)  (1.94, 23.66) 

EC 26.1 6.66  15.8 2.88  0.60 0.141  8.14 4.282 

  n=61 (11.1, 44.4)  (9.3, 21.2)  (0.28, 0.91)  (1.50, 21.16) 

EH 25.4 5.72  13.8 3.40  0.63 0.118  9.52 5.930 

  n=13 (16.1, 35.3)  (6.8, 17.6)  (0.46, 0.84)  (3.10, 24.25) 

RM 18.5 6.00  17.1 3.29  0.68 0.114  7.69 5.338 

  n=64 (8.3, 37.2)  (9.1, 24.2)  (0.45,  0.85)  (0.90, 22.33) 

WB 23.7 7.23  19.4 2.85  0.68 0.115  11.75 6.457 

  n=13 (10.5, 33.1)  (11.9, 23.7)  (0.51, 0.82)  (5.27, 28.41) 

YB 19.8 7.400  16.1 3.95  0.56 0.106  10.02 4.087 

  n=18 (9.0, 32.9)  (6.4, 22.1)  (0.37, 0.76)  (5.74, 21.02) 

WA 23.9 11.870  18.1 2.98  0.76 0.082  11.17 5.218 

  n=6 (8.7, 38.0)  (14.0, 23.2)  (0.65, 0.84)  (2.74, 15.52) 

AM 13.7 --  13.7 --  0.71 --  4.15 -- 

  n=1 (--)  (--)  (--)  (--) 



1
LP = longleaf pine; BF = balsam fir; SP = spruce; EC = eastern cedar; EH = eastern hemlock; 514 

RM = red maple; WB = white birch; YB = yellow birch; WA = white ash; and AM = American 515 

mountain-ash. 516 

  517 



Table 2. Estimated parameters for the Longleaf Pine and Acadian Forest datasets. 518 

Parameter Dataset 

 Longleaf Pine Acadian Forest 

mu 5.7964 0.3054 

sigma 4.1094 0.3204 

kappa 2.5188 X 10
-3 

0.3378 

density (trees in area) 584 258 

x-range {0, 200} {0,  50} 

y-range {0, 200} {0,  50} 
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Table 3. Maximum likelihood estimates of the two-parameter, left-truncated Weibull distribution 520 

for modelling dbh distributions by species. 521 

Species Parameter 

 Truncation 

(min. dbh, cm) 

scale 

(b) 

shape 

(c) 

longleaf pine    

   understory trees 2.0 8.8774 1.1236 

   overstory trees 24.0 44.1230 3.5925 

    

balsam fir 8.0 10.1321 2.0094 

spruce 8.0 24.9090 2.6850 

eastern cedar 8.0 28.6132 4.2684 

eastern hemlock 8.0 27.5676 5.3549 

red maple 8.0 19.6190 2.8448 

white birch 8.0 26.5636 4.3360 

yellow birch 8.0 21.1103 2.6357 

white ash 8.0 24.5526 1.9063 

American mountain-ash
1
 8.0 13.7000 3.6000 

1
American mountain-ash had only 1 observation, scale parameter set to the observed dbh and the 522 

shape parameter to be a symmetric distribution. 523 
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Table 4. Maximum likelihood estimates of the three-parameter, reverse Weibull distribution for 525 

modelling height distributions by species. 526 

Species Parameter 

 location 

(max. ht., m) 

scale
1 

(b) 

shape 

(c) 

longleaf pine    

   understory trees 22.7 8.3569 2.6615 

   overstory trees 40.1 25.2362 3.5502 

    

balsam fir 18.6 10.7582 2.0524 

spruce 24.4 16.4588 1.5749 

eastern cedar 21.3 15.1229 1.9645 

eastern hemlock 17.7 13.6660 1.1269 

red maple 24.3 16.3058 2.1941 

white birch 23.8 19.0692 1.5600 

yellow birch 22.2 17.4692 1.4917 

white ash 23.3 17.8289 1.3122 

American mountain-ash
2
 14.7 13.7 3.6 

1
scale parameter defined in terms of height above ground, true scale parameter is height below 527 

maximum and is location – scale. 
2
American mountain-ash only had 1 observation, location was 528 

set 1 m above observed value, scale was set to the observed value, and the shape was set to a 529 

symmetric distribution. 530 
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Table 5. Minimum, maximum, mean and variance of crown ratio by species. Values are used to 532 

obtain parameter recovery estimates of the 4-parameter Beta distribution. 533 

Species Parameter 

 Minimum Maximum Mean Variance 

longleaf pine     

   understory trees 0.50 0.56 0.51 0.0001 

   overstory trees 0.51 0.73 0.54 0.0006 

     

balsam fir 0.16 0.92 0.66 0.03268 

spruce 0.30 0.99 0.66 0.01865 

eastern cedar 0.27 0.91 0.60 0.01992 

eastern hemlock 0.46 0.85 0.63 0.01381 

red maple 0.45 0.85 0.67 0.00916 

white birch 0.51 0.83 0.68 0.01266 

yellow birch 0.36 0.76 0.56 0.01066 

white ash 0.65 0.85 0.76 0.00681 

American mountain-ash
1 

0.66 0.76 0.71 0.00071 

1
American mountain-ash only had 1 observation, minimum and maximum set to .05 below and 534 

above the observed value, and mean and variance set to make a uniform distribution. 535 
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Table 6. Partial correlations, based on Spearman’s rank correlation, between available tree area, 537 

DBH, height and crown ratio for the Longleaf Pine and Acadian Forest datasets. 538 

Correlation Dataset 

 Longleaf Pine Acadian Forest 

area – DBH 0.5556 0.1639 

area – Height 0.6196 0.1313 

area – Crown Ratio 0.7042 -0.1764 

DBH – Height 0.9808 0.7118 

DBH – Crown Ratio 0.9540 -0.2664 

Height – Crown Ratio 0.9849 -0.1564 

 539 
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Figure Titles 541 

Figure 1. Examples of spatial patterns: A) lattice process with no variation; B) a lattice process 542 

with multiplicative jittering; C) a homogeneous Thomas process; and D) an inhomogeneous 543 

Thomas process. 544 

Figure 2. Input windows for the stand structure generator:A) the main menu; B) the lattice spatial 545 

model input window; C) the Thomas spatial model input window; D) the species parameter input 546 

window; E) the correlation input window; F) the visualization input window; and G) and 547 

example Stand Visualization window. 548 

Figure 3. Marked spatial correlations for the example datasets: A) longleaf pine dbh; B) Acadian 549 

Forest dbh; C) longleaf pine height; D) Acadian Forest height; E) longleaf pine crown ratio; and 550 

F) Acadian Forest crown ratio. 551 
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