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Three scenarios

* The Good * The Bad
* You designed * Someone else
the experiment designed the
* You have the experiment
data * They explain how
e Now what? they laid out the
treatments

* You get the data
* Now what?

* The Ugly
* Your boss hands you

a file

* In the file is a map,
a brief description
of an experiment

the data sheets
* Now what?



Experimental Design

* Concerned with the analysis of data

* “Significant” effects are determined by comparing within
group means and variation to between group variation

* In designing experiments, we attempt to minimize within
group variation and maximize between group variation
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Logic of Analysis of Variance

* We start with a uniform population
* Randomly divide it into subpopulations
* Apply a treatment that we expect to influence the subpopulations’ means

* We measure effect by examining variation within each treatment to variation
between each treatment

* |f treatment has “No Effect” then the three means will have the same mean as
the original population and the between treatment variation will equal O

* So, if Treatment variation is small relative to Population variation, then there is
no effect

* Conversely, if Treatment variation is large (ie, big differences between
treatment means) relative to Population variation, then there is an effect

* Thus we test differences in means by assessing proportions of variation



Statistical Hypotheses

* Null Hypothesis

* There is no differences between
all of the means

* pl=p2=p3
* Alternative Hypothesis

* At least one mean is different
* pl #p2=p3
* pl=p2 #p3
* pl1 #p2 #p3

* Specific Hypothesis

* General Hypothesis



Statistical Test

* We construct our “Test” statistic assuming the Null hypothesis
Is true

* If the Null hypothesis is true, the test statistic should be 0 (no
difference)

* Most likely (and hopefully) our test statistic will be >> 0
* Because we have a sample we have sampling error

* We learned yesterday that the sampling error causes
differences in our estimate of the mean



Statistical Test

* So we could obtain a test statistic >> 0, because of sampling
error

* Therefore, we assess, given the variability in our population,

what is the probability that a difference as large as we have
observed, is due to sampling error

* If that probability is small, then we assume the difference is
not due to sample error, but due to our treatment, and we
conclude that we have significant treatment effects



Experiment 1 — Simple One Way ANOVA

* 18 Experimental Units
* One treatment (A)

* Three treatment levels
* A1 =0 (Control)
e A2=X
e A3 =2X

* 6 Replicates

* Treatment level is randomly assigned to each experimental
unit



ent 1 — Layout Map




OVA Table

Source DF Sum of Squares Mean Squares F-statistic P(F)
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The ANOVA Linear Model

* Y(ij) = p + T(i) +e(ij)
* The model implies expected mean squares

* If you can determine the expected mean squares, you can
analyze any experimental design

* Fortunately there are a few “rules” that make this job
relatively easy



Expected Mean Squares — One way ANOVA

* Write the variable terms in the model as row headings,
include subscripts, bracket subscripts for nested factors

Variables




Expected Mean Squares — One way ANOVA

* Write the subscripts in the model as column headings; over
each subscript write F if the factor levels are fixed, R if they
are random. Also write the number of observations

i j EMS




Expected Mean Squares — One way ANOVA

* For each row (each term in the model) copy the number of
observations under each subscript, providing the subscript
does not appear in the row heading

i j EMS




ted Mean Squares — One way ANO

any bracketed subscripts in the model, place a 1 under
se subscripts that are in the brackets

i j EMS

Variables
Al 6
ejli)




ed Mean Squares — One way AN

he remaining cells with 0 or 1, depending upon whet
factoris F (0) or R (1)

i i EMS

Variables
Al 0 6
ej(i)




Expected Mean Squares — One way ANOVA

* Expected mean squares is found by covering the column(s) that
contain non-bracketed subscript letters; multiply the remaining
numbers in each row, these products are the coefficients for the
factor contribution to EMS

6
EMS
Variables
Al 6 6@(T) + M2 e)
ej(i) 1




Expected Mean Squares — One way ANOVA

* Expected mean squares is found by covering the column(s) that
contain non-bracketed subscript letters; multiply the remaining
numbers in each row, these products are the coefficients for the
factor contribution to EMS

3
F
| EMS
Variables
Ai 0 60(T) + o72( e )
ej(i) 1 oh2(e)




complicated designs

-way ANOVA fixed factors
o-way ANOVA fixed and random factors
ndomized Block Design

sted Design




Experiment 2: Two-way Anova with Fixed
Factors

* 18 experimental units

* Treatment A
e AO
e A2
.« A4

* Treatment B
* BO
* B1

* 6 Treatment combinations
* 3 Replicates
* Linear model: Y = p + g(A) + 2(B) + 6(AB) + e



d Mean Squares — two way AN
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] 3 2 3
F F R
Variables i ] k EMS
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Expected Mean Squares —two way ANOVA

* For each row (each term in the model) copy the number of
observations under each subscript, providing the subscript
does not appear in the row heading

3 2 3
F F
Variables | ] k EMS
Al 2 3
Bj 3 3

Abii
ek(ij)




ted Mean Squares — two way ANO

any bracketed subscripts in the model, place a 1 unde
se subscripts that are in the brackets

3 2 3
F F R
Variables i ] k EMS
Al 2 3
Bj 3 3

Abij
ek(ij) 1 1




ed Mean Squares — two way ANO

he remaining cells with 0 or 1, depending upon whet
factoris F (0) or R (1)

F F R
Variables | ] k EMS

Ai 0 2 3
Bj 3 0 3
Abij 0 0 3
ek(ij) 1 1 1




Expected Mean Squares —two way ANOVA

* Expected mean squares is found by covering the column(s) that contain
non-bracketed subscript letters; multiply the remaining numbers in
each row, these products are the coefticients for the factor
contribution to EMS

2 3
Variables k EMS
Ai 2 3 60(A) + 06(B) + 0p(AB)+ on2(e)
Bj 0 3
Abij 0 3
ek(ij) 1 1




Expected Mean Squares —two way ANOVA

* Expected mean squares is found by covering the column(s) that contain
non-bracketed subscript letters; multiply the remaining numbers in
each row, these products are the coefticients for the factor
contribution to EMS

3 3
F
Variables | EMS
Ali 0 3 60(A) + 00(B) + 0p(AB)+ c"2(e)
Bj 3 3 0¢(A) + 99(B) + 0p(AB)+ c"2(e)
Abij 0 3
ek(ij) 1 1




Expected Mean Squares —two way ANOVA

* Expected mean squares is found by covering the column(s) that contain
non-bracketed subscript letters; multiply the remaining numbers in
each row, these products are the coefticients for the factor

contribution to EMS

Variables

Ai
Bj
Abij
ek(ij)

EMS

3 6@(A) + 0p(B) + 0p(AB)+ o”2(e)
3 0@(A) + 99(B) + 0p(AB)+ or2( e )
3 0@(A) + 0p(B) + 3p(AB)+ or2( e )
1




Expected Mean Squares —two way ANOVA

* Expected mean squares is found by covering the column(s) that contain
non-bracketed subscript letters; multiply the remaining numbers in
each row, these products are the coefticients for the factor
contribution to EMS

3 2
F F
Variables i ] EMS
Ai 0 2 60(A) + 08(B) + 08(AB)+ 0”2(e)
Bj 3 0 09(A) + 99(B) + 08(AB)+ o”2(e)
Abij 0 0 3¢(AB)+ 0”2( e )
ek(ij) 1 1 oh2(e)




Experiment 3: Two-way ANOVA with A fixed

and B random

* Same design as last time
* Bis a nuisance factor that we cannot control, but only observe
it level (ie, we have a “random” sample of levels of B)

* Linear model: Y = p + g(A) + 2(B) + 2(AB) + e



Expected Mean Squares — Experiment 3

* For each row (each term in the model) copy the number of
observations under each subscript, providing the subscript
does not appear in the row heading

3 2 3
F R
Variables i ] K EMS
Al 2 3
Bj 3 3
Abij 3

ek(ij)




ed Mean Squares — Experiment 3

any bracketed subscripts in the model, place a 1 unde
se subscripts that are in the brackets

3 2 3
F R R
Variables i j k EMS
Al 2 3
Bj 3 3
Abij 3

ek(ij) 1 1




ed Mean Squares — Experiment 3

he remaining cells with 0 or 1, depending upon whet
factoris F (0) or R (1)

Variables i J k EMS
Al
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Expected Mean Squares — Experiment 3

* Expected mean squares is found by covering the column(s) that contain
non-bracketed subscript letters; multiply the remaining numbers in
each row, these products are the coefticients for the factor
contribution to EMS

2 3
Variables k EMS
Ai 2 3 60(A) + 60(AB) + gn2( e)
Bj 1 3
Abij 1 3
ek(ij) 1 1




Expected Mean Squares — Experiment 3

* Expected mean squares is found by covering the column(s) that contain
non-bracketed subscript letters; multiply the remaining numbers in
each row, these products are the coefticients for the factor

contribution to EMS

3 3
F
Variables | EMS
Ali 0 3 6p(A) + 6p(AB) + or2( e)
Bj 3 3 9¢(B) + 0p(AB) + on2(e)
Abij 0 3
ek(ij) 1 1




Expected Mean Squares — Experiment 3

* Expected mean squares is found by covering the column(s) that contain
non-bracketed subscript letters; multiply the remaining numbers in
each row, these products are the coefticients for the factor
contribution to EMS

3
Variables EMS
Ali 3 6p(A) + 68(AB) + on2( e)
Bj 3 9¢(B) + 09(AB) +c”2(e)
Abij 3 3p(AB) +o”r2( e)

ek(ij) 1




Expected Mean Squares — Experiment 3

* Expected mean squares is found by covering the column(s) that contain
non-bracketed subscript letters; multiply the remaining numbers in
each row, these products are the coefticients for the factor
contribution to EMS

3 Z
F R
Variables i ] EMS
Ali 0 ? 6@(A) + 68(AB) + oM2( e )
Bj 3 1 9¢(B) + Op(AB) + on2(e)
Abij 0 1 3¢(AB) + 0"2( e )
ek(ij) 1 1 oh2(e)




