Experimental Design

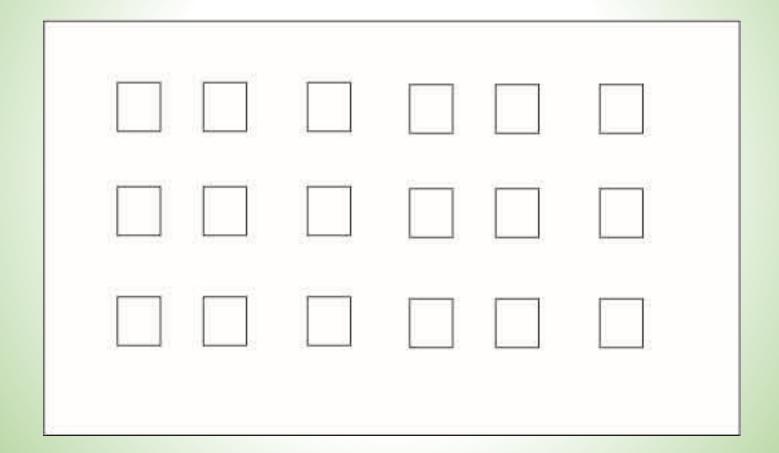
IUFRO-SPDC

Snowbird, UT September 29 – Oct 3, 2014

Drs. Rolfe Leary and John A. Kershaw, Jr.

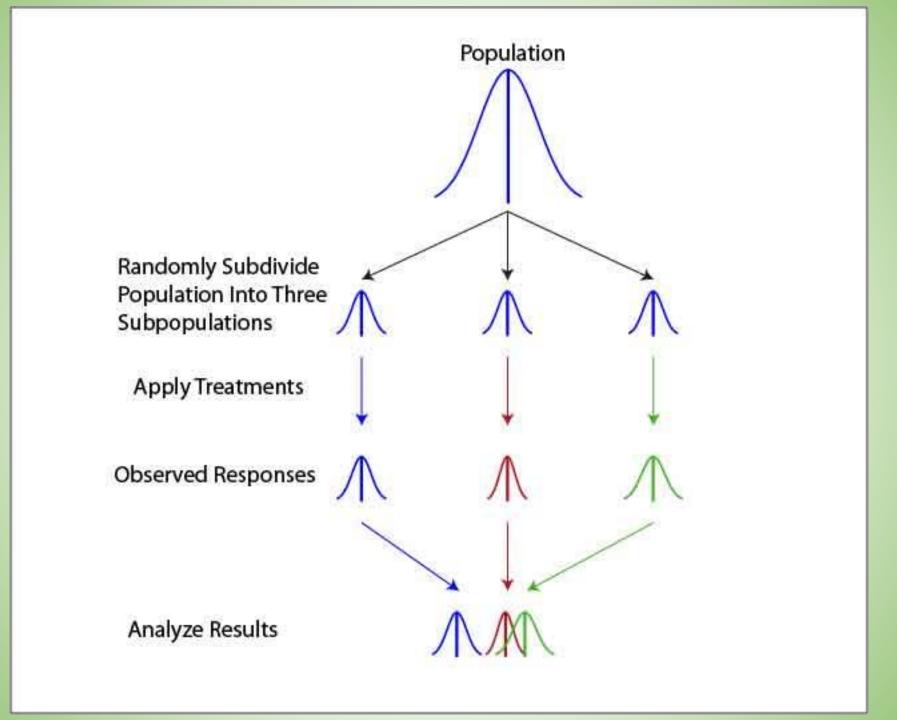
Three scenarios

- The Good
 - You designed the experiment
 - You have the data
 - Now what?


- The Bad
 - Someone else designed the experiment
 - They explain how they laid out the treatments
 - You get the data
 - Now what?

- The Ugly
 - Your boss hands you a file
 - In the file is a map, a brief description of an experiment
 - and..... the data sheets
 - Now what?

Experimental Design


- Concerned with the analysis of data
- "Significant" effects are determined by comparing within group means and variation to between group variation
- In designing experiments, we attempt to minimize within group variation and maximize between group variation

Our Experimental Population

Our Experiment

- Treatment A is hypothesized to effect the response variable that is of interest
- 18 Experimental Units
- 3 Treatment levels:
 - A1 = 0 (Control)
 - A2 = X
 - A3 = 2X
- 6 Replicates

Logic of Analysis of Variance

- We start with a uniform population
- Randomly divide it into subpopulations
- Apply a treatment that we expect to influence the subpopulations' means
- We measure effect by examining variation within each treatment to variation between each treatment
- If treatment has "No Effect" then the three means will have the same mean as the original population and the between treatment variation will equal 0
- So, if Treatment variation is small relative to Population variation, then there is no effect
- Conversely, if Treatment variation is large (ie, big differences between treatment means) relative to Population variation, then there is an effect
- Thus we test differences in means by assessing proportions of variation

Statistical Hypotheses

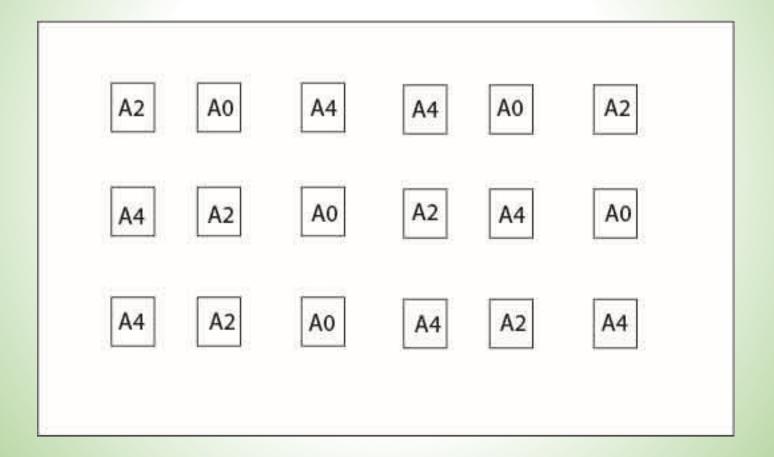
- Null Hypothesis
 - There is no differences between all of the means
 - µ1 = µ2 = µ3
- Alternative Hypothesis
 - At least one mean is different
 - μ1 ≠ μ2 = μ3
 - μ1 = μ2 ≠ μ3
 - $\mu 1 \neq \mu 2 \neq \mu 3$

Specific Hypothesis

General Hypothesis

Statistical Test

- We construct our "Test" statistic assuming the Null hypothesis is true
- If the Null hypothesis is true, the test statistic should be 0 (no difference)
- Most likely (and hopefully) our test statistic will be >> 0
- Because we have a sample we have sampling error
- We learned yesterday that the sampling error causes differences in our estimate of the mean

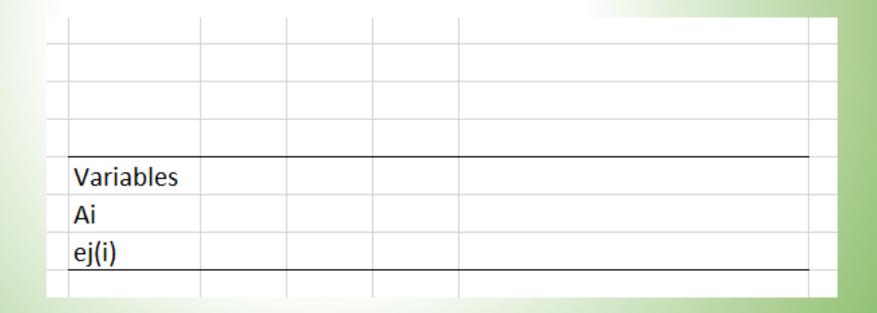

Statistical Test

- So we could obtain a test statistic >> 0, because of sampling error
- Therefore, we assess, given the variability in our population, what is the probability that a difference as large as we have observed, is due to sampling error
- If that probability is small, then we assume the difference is not due to sample error, but due to our treatment, and we conclude that we have significant treatment effects

Experiment 1 – Simple One Way ANOVA

- 18 Experimental Units
- One treatment (A)
- Three treatment levels
 - A1 = 0 (Control)
 - A2 = X
 - A3 = 2X
- 6 Replicates
- Treatment level is randomly assigned to each experimental unit

Experiment 1 – Layout Map


The ANOVA Table

Source	DF	Sum of Squares	Mean Squares	F-statistic	P(F)
Between (treatment)	k-1	$r {\sum_{i=1}^k \left(\overline{Y}_{i.} - \overline{Y}_{} \right)^2}$	SST/(k-1)	MST/MSR	
Within (residual)	k(r-1)	$\sum_{i=1}^k \sum_{j=1}^r \Bigl(Y_{ij} - \overline{Y}_{i.}\Bigr)^2$	SSR/(k(r-1))		
Total	kr-1	$\sum_{i=1}^k \sum_{j=1}^r \left(Y_{ij} - \overline{Y} \right)^2$			

The ANOVA Linear Model

- Y(ij) = µ + T(i) +e(ij)
- The model implies expected mean squares
- If you can determine the expected mean squares, you can analyze any experimental design
- Fortunately there are a few "rules" that make this job relatively easy

• Write the variable terms in the model as row headings, include subscripts, bracket subscripts for nested factors

• Write the subscripts in the model as column headings; over each subscript write F if the factor levels are fixed, R if they are random. Also write the number of observations

	3	6	
	F	R	
	i	j	EMS
Variables			
Ai			
ej(i)			

• For each row (each term in the model) copy the number of observations under each subscript, providing the subscript does not appear in the row heading

	3	6	
	F	R	
	i	j	EMS
Variables			
Ai		6	
ej(i)			

 For any bracketed subscripts in the model, place a 1 under those subscripts that are in the brackets

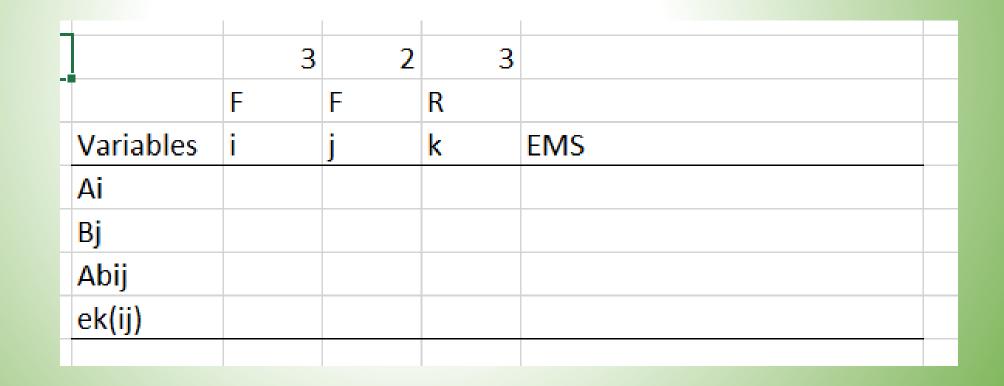
	3	6	
	F	R	
	i	j	EMS
Variables			
Ai		6	
ej(i)	1		

• Fill the remaining cells with 0 or 1, depending upon whether the factor is F (0) or R (1)

	3	6	
	F	R	
	i	j	EMS
Variables			
Ai	0	6	
ej(i)	1	1	
			+

	6	
	R	
	j	EMS
Variables		
Ai	6	6ø(T) + σ^2(e)
ej(i)	1	

	3		
	F		
	i		EMS
Variables			
Ai	0		6ø(T) + σ^2(e)
ej(i)	1		6ø(T) + σ^2(e) σ^2(e)


More complicated designs

- Two-way ANOVA fixed factors
- Two-way ANOVA fixed and random factors
- Randomized Block Design
- Nested Design

Experiment 2: Two-way Anova with Fixed Factors

- 18 experimental units
- Treatment A
 - A0
 - A2
 - A4
- Treatment B
 - B0
 - B1
- 6 Treatment combinations
- 3 Replicates
- Linear model: $Y = \mu + \phi(A) + \phi(B) + \phi(AB) + e$

Factors listed

 For each row (each term in the model) copy the number of observations under each subscript, providing the subscript does not appear in the row heading

	3	2	3		
	F	F	R		
Variables	i	j	k	EMS	
Ai		2	3		
Bj	3		3		
Abij					
ek(ij)					

 For any bracketed subscripts in the model, place a 1 under those subscripts that are in the brackets

	3	2	3	
	F	F	R	
Variables	i	j	k	EMS
Ai		2	3	
Bj	3		3	
Abij				
Abij ek(ij)	1	1		

• Fill the remaining cells with 0 or 1, depending upon whether the factor is F (0) or R (1)

	3	2	3	
	F	F	R	
Variables	i	j	k	EMS
Ai	0	2	3	
Bj	3	0	3	
Abij	0	0	3	
ek(ij)	1	1	1	

	2	3	
	F	R	
Variables	j	k	EMS
Ai	2	3	$6\phi(A) + 0\phi(B) + 0\phi(AB) + \sigma^{2}(e)$
Bj	0	3	
Abij	0	3	
ek(ij)	1	1	

	3	3	
	F	R	
Variables	i	k	EMS
Ai	0	3	$6\phi(A) + 0\phi(B) + 0\phi(AB) + \sigma^{2}(e)$
Bj	3	3	$0\phi(A) + 9\phi(B) + 0\phi(AB) + \sigma^{2}(e)$
Abij	0	3	
ek(ij)	1	1	

		3	
		R	
Variables		k	EMS
Ai		3	$6\phi(A) + 0\phi(B) + 0\phi(AB) + \sigma^{2}(e)$
Bj		3	$0\phi(A) + 9\phi(B) + 0\phi(AB) + \sigma^{2}(e)$
Abij		3	$0\phi(A) + 0\phi(B) + 3\phi(AB) + \sigma^{2}(e)$
ek(ij)		1	

	3	2		
	F	F		
Variables	i	j	E	EMS
Ai	0	2	6	5ø(A) + 0ø(B) + 0ø(AB)+ σ^2(e)
Bj	3	0	0	Dø(A) + 9ø(B) + 0ø(AB)+ σ^2(e)
Abij	0	0	3	3ø(AB)+ σ^2(e)
ek(ij)	1	1	0	o^2(e)

Experiment 3: Two-way ANOVA with A fixed and B random

- Same design as last time
- B is a nuisance factor that we cannot control, but only observe it level (ie, we have a "random" sample of levels of B)
- Linear model: $Y = \mu + \phi(A) + \phi(B) + \phi(AB) + e$

 For each row (each term in the model) copy the number of observations under each subscript, providing the subscript does not appear in the row heading

	3	2	3	
	F	R	R	
Variables	i	j	k	EMS
Ai		2	3	
Вј	3		3	
Abij			3	
ek(ij)				

 For any bracketed subscripts in the model, place a 1 under those subscripts that are in the brackets

	3	2	3	
	F	R	R	
Variables	i	j	k	EMS
Ai		2	3	
Bj	3		3	
Abij			3	
ek(ij)	1	1		

• Fill the remaining cells with 0 or 1, depending upon whether the factor is F (0) or R (1)

	3	2	3	
	F	R	R	
Variables	i	j	k	EMS
Ai	0	2	3	
Bj	3	1	3	
Abij	0	1	3	
ek(ij)	1	1	1	

	2	3	
	R	R	
Variables	j	k	EMS
Ai	2	3	$6\phi(A) + 6\phi(AB) + \sigma^{2}(e)$
Bj	1	3	
Abij	1	3	
ek(ij)	1	1	

	3	3	
	F	R	
Variables	i	k	EMS
Ai	0	3	6ø(A) + 6ø(AB) + σ^2(e)
Вј	3	3	$9\phi(B) + 0\phi(AB) + \sigma^{2}(e)$
Abij	0	3	
ek(ij)	1	1	

	3	
	R	
Variables	k	EMS
Ai	3	$6\phi(A) + 6\phi(AB) + \sigma^{2}(e)$
Bj	3	$9\phi(B) + 0\phi(AB) + \sigma^{2}(e)$
Abij	3	3ø(AB) + σ^2(e)
ek(ij)	1	

	3	2	
	F	R	
Variables	i	j	EMS
Ai	0	2	6ø(A) + 6ø(AB) + σ^2(e)
Bj	3	1	9ø(B) + 0ø(AB) + σ^2(e)
Abij	0	1	3ø(AB) + σ^2(e)
ek(ij)	1	1	σ^2(e)