
Research Hypotheses and Inferences

IUFRO-SPDC

Snowbird, UT September 29 – Oct 3, 2014

Drs. Rolfe Leary and John A. Kershaw, Jr.

Research Hypotheses

- We've come down left-hand side of the Vee
- Hopefully by now we have a solid problem statement and a research question
- We may still b struggling with our research hypotheses

Research Hypotheses

- Statistical hypotheses are about facts, measurements
- Mean tail length of cat in the USA = mean tail length of cats in Europe
- Research hypothesis is about how nature is or how nature works
- Cats evolved tails because tails have a survival advantage; specifically, when cats fall from high places, tails help them right themselves, so that they land on their feet

Research Hypotheses

- Many ways to Classify them
 - Some provide explanations, some provide answers
 - Some are qualitative, some are quantitative
 - Some are simple, some mechanistic
 - Some are conceived quickly, some takes months (or longer)

Methods of Generating Research Hypotheses

- Question Method
- Subject Method
- Fact Method (Retroduction)

Question Method

- Entertain an interesting question about a condition or process observed in nature
- Be a regular questioner and, in time, good research hypotheses will come
- Jack pine (Pinus banksiana) is typically considered a dry site species
- In the upper peninsula of Michigan, some JP sites flood following harvesting
- "If JP is a dry site species, why do some sites flood following harvesting?"
- Hypothesis: Most JP stands originated in the 1930s, during a prolonged drought, everything was dry then, therefore JP can be found today on wet sites because of initial site conditions.

Subject Method

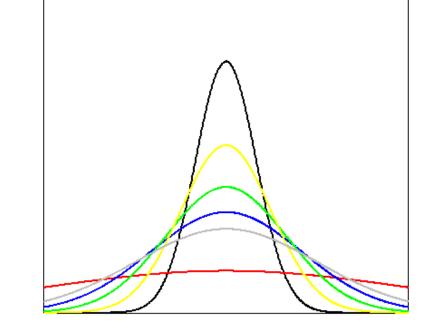
- Think about a subject and, at some point, the thinking will suggest a possible truth (a research hypothesis)
- Continuing to think about JP
- Only SOME sites flood
- If drought was the cause, why don't we see JP everywhere?
- JP appears to be found on very wet sites and very dry sites
- Hypothesis: JP grows best on very wet and very dry sites

Fact Method (Retroduction)

- "retro" means opposite to
- "retro" duction reasons in a direction opposite to deduction
- Example (deduction)
 - It rained last night; therefore, our street is wet
- Example (retroduction)
 - Our street is wet, perhaps it rained last night

Using Retroduction to conceive a research hypothesis (Romesburg 2009 after Hanson 1958)

- Some interesting facts, or set of facts is observed (F)
- F would be explained if our research hypothesis (H) is true
- Hence, there is reason to think H is true


Jack Pine example

- We find JP on very wet and very dry sites
- We may initial think: JP grows best on very dry or very wet sites
- We also observe that JP goes very well on mesic sites, but we don't tend to find it there, we find Acer, Betula, and Abies species on mesic sites
- Perhaps JP is found on very wet and very dry sites because it competes best of those sites
- We could test this by looking at relative growth rates across a gradient of wetness

Jack Pine example

- Jack pine
- Black spruce
- Balsam fir
- White birch
- Red maple
- Sugar maple

Relative Growth

Wetness

Scientific Inference

- Rolfe touched on this yesterday
- For a theory to be a theory, it must be testable(Platt)
- Hypotheses are the forms by which we test theories

Components of Science

- Problem Identification
- Discovery
- Justification

Discovery

- A creative enterprise
- May not have a logical progression
- Goal is to generate testable hypotheses

- Strategies
 - Trial and error
 - Systematic search
 - Serendipity
 - Inspiration
 - Illumination
 - Analogy
 - Derivation
 - Induction
 - Retroduction

McRobert's Justification Structure

— Number of hypotheses —

	[Discovery]	Justification	
Ļ	0	1	2+
Corroboration	Induction or Retroduction	Hypothetico- Deduction	Multiple Hypotheses
Contradiction			
Disproof		Falsification	Strong inference

Disproof

- Most of us work in the Corroboration/Discovery Box
- We may move right into the Justification phase, developing multiple hypotheses and strategies for testing those hypotheses
- Corroboration is the accumulation of supporting facts
- Popper (1968) argues for a shift from corroboration to disproof
- Conclusive disproof is possible because it only takes one counterexample to disprove an hypothesis

Falsification

- **Requires a clear state of the hypothesis**
- Requires a clear statement of the conditions under which the hypothesis would be false
- Object is to acquire evidence disproving the hypothesis

Implications for designing experiments

- Corroboration designs requires resources allocated to acquiring both evidence supporting and evidence contradicting our hypothesis to satisfy the test criteria
- Falsification experiments concentrate resources to provide maximum opportunity to detect counter examples

Strong Inferences

- **Disproof is a hard doctrine (Platt)**
- Why would we continually want to place years of work on the cutting edge?
- When was the last time you read a negative results paper?
- Employing a method of multiple hypotheses can get around this

Strong Inferences

- Surround the problem with an exhaustive set of hypotheses whose deductions are mutually exclusive
- Arrange the hypotheses into a tree structure on the basis of similar and dissimilar features
- Perform falsification experiments at one branching points to eliminate one branch or another

Multiple Hypotheses

- The concept of multiple hypotheses dates back to 1897
- Chamberlin, T.C. (1897) The method of multiple working hypotheses. *Journal of Geology*, 5, 837–848.
- Why haven't we adopted and employed this method more?

Testing Research Hypotheses

- The Hypothesis Step
 - Conceive or take an existing hypothesis
 - Assemble the supporting evidence for the hypothesis
- Deduction Step
 - State conditions under which the hypothesis holds
 - State conditions under which it doesn't hold
- Shunt Cause Step
 - Minimize factors that confound results
 - Establish controls to minimize confounding effects
- Experiment Step
 - Design and Implement an Experiment that minimizes random error and confounding effects
- Decision Step
 - Based on your results and the deduction step decide the outcome of your hypothesis