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Statistical Analysis and 

the Illusion of Objectivity 
James O. Berger 
Donald A. Berry 

In many scientific journals, statistical analysis is used to 

give the seal of objectivity to conclusions. Yet this 

general perception of the objectivity of statistics, and 

perhaps of science in general, may be misguided. Let us 
be careful here; objectivity is a loaded word, and the next 
worst thing to being a fraud is to be "nonobjective." We 
are not going to discuss the manner in which a scientist 
strives to obtain objective evidence. Rather, we will 
discuss whether or not it is possible to arrive at an 

objective conclusion based on data from an experiment. 
We grant that objective data can be _ 
obtained, but we will argue that 

reaching sensible conclusions from 
statistical analysis of these data may 
require subjective input. 

This conclusion is in no way 
harmful or demeaning to statistical 

analysis. Far from it; to acknowledge 
the subjectivity inherent in the inter 

pretation of data is to recognize the 
central role of statistical analysis as a 
formal mechanism by which new ev 
idence can be integrated with exist 

ing knowledge. Such a view of statistics as a dynamic 
discipline is far from the common perception of a rather 

dry, automatic technology for processing data. 

Acknowledging the subjectivity of statistical analy 
sis would be healthy for science as a whole for at least 
two reasons. The first is that the straightforward meth 
ods of subjective statistical analysis, called Bayesian 
analysis, yield answers which are much easier to under 
stand than standard statistical answers, and hence much 
less likely to be misinterpreted. This will be dramatically 
illustrated in our first example. 

The second reason is that even standard statistical 
methods turn out to be based on subjective input?input 
of a type that science should seek to avoid. In particular, 
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Acknowledging the role 
of subjectivity in the 
interpretation of data 

could open the way for 
more accurate and flexible 

statistical judgments 

standard methods depend on the intentions of the 

investigator, including intentions about data that might 
have been obtained but were not. This kind of subjectiv 
ity is doubly dangerous. First, it is hidden; few research 
ers realize how subjective standard methods really are. 

Second, the subjective input arises from the producer 
rather than the consumer of the data?from the investi 

gator rather than the individual scientist who reads or is 
told the results of the experiment. 

This article is an introduction to one side of a long 
_ and ongoing fundamental debate in 

statistics between the subjectivists, or 

Bayesians, and the nonsubjectivists. 
The Bayesian school of statistics is 
named after the Reverend Thomas 

Bayes, who proposed the basic ideas 
in 1763 (1). The opposing school is 

actually many schools going by dif 
ferent names; we will use "standard 
statistics" as a generic name. If you 
have a passing familiarity with statis 
tical ideas, they are almost certainly 
what we call standard. 

The debate involves a number of issues in addition 
to that of subjectivity. A closely related concern is 

//conditioning,, (2). Simply put, conditionalists (includ 
ing Bayesians) feel that only the actual data are relevant 
to the inferences drawn from an experiment; in standard 
statistics, as suggested above, the thoughts of the inves 

tigator about data that might have been observed but 
were not are also deemed relevant. This important issue 
and its ramifications will be clarified as we proceed. 

In many?perhaps most?statistical applications, 
the various approaches will give very similar answers. 
There are at least two kinds of situations, however, in 
which major differences of interpretation arise. The first 
is the testing of precise hypotheses, such as scientific 
theories, and the second is the analysis of accumulating 
data, commonly encountered in clinical trials. We will 

give an example of each type. 

Testing a precise hypothesis 
Let us start with a simple example of testing a precise 
hypothesis. Suppose an experiment is conducted to 

study the effectiveness of vitamin C in treating the 
common cold, and that standard statistical analysis finds 

"significant evidence at the 0.05 level" that vitamin C has 
an effect. Such statements concerning statistical signifi 
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cance abound in journals dealing with science, engineer 
ing, social policy, business, and medicine. They have 
had a major impact on important conclusions and deci 
sions in these areas. But what do they really mean? 

Specifically, if there is "significant evidence at the 0.05 
level," how strongly do the data support the conclusion 
that vitamin C is effective in treating colds? 

We will argue two points. First, it is not possible to 

provide an absolutely objective answer to this question; 
the strength of the evidence will depend on the person 
interpreting the data. It is possible, however, to find 
limits on the strength of the evidence, and this leads to 
our second point. In examples such as the hypothetical 
vitamin C experiment, "significant evidence at the 0.05 
level" can actually arise when the data provide very little 
or no evidence in favor of an effect. This astonishing fact 
is a prime example of the "conditioning" conflict men 
tioned above. 

To explore this point in more detail, let H denote the 

hypothesis that vitamin C has no effect on the common 
cold. In statistical language this is the "null hypothesis"; 
to establish that vitamin C has an effect it is necessary to 
obtain data that would lead to the rejection of H. 

Suppose an experiment is conducted with 17 matched 

pairs of subjects. (A matched pair is one in which the 
two subjects are deemed to be as similar as possible?for 
example, identical twins would be an ideal matched 

pair.) Within each pair, one subject is selected randomly 

ia m 
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00 00 r- i 
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Preferences for C 

Figure 1. The hypothetical vitamin C experiment illustrates the 

steps required to arrive at a P-value. The binomial distribution of 

preferences for C under hypothesis H, shown here, is the same as 

the distribution of heads that would result when a coin is tossed 17 

times. Results more extreme than the 13 preferences for C actually 
observed constitute the set R, shown in color. The P-value is the 

probability of R, 0.049, which is calculated by adding the individual 

probabilities of the results indicated in color. 

(by the toss of a coin, say) to receive vitamin C (C) and 
the other subject is given a placebo (P). (Consistent with 
standard practice, none of the subjects or coordinators 
knows which subjects received vitamin C; that is, the 

experiment is "double blind.") 
Of interest is whether the subject receiving C or the 

subject receiving P exhibits greater relief from cold 

symptoms 24 hours after treatment. In a more detailed 

analysis we would consider the actual levels of relief, but 
for simplicity we will restrict consideration here to 

whether, within each pair, C is better or P is better. One 
of these responses will result within each pair even if 
treatments C and P are equally effective on average in the 

general population. Some differences between matched 

subjects will exist, so the subjects in a given pair will 
have different responses even if treatments C and P have 
identical average effects. This is an example of the 
"random error" that statistics must deal with. 

Whether there is evidence for or against the null 

hypothesis H?"vitamin C has no effect"?will be deter 
mined by comparing the number of pairs in which C is 
better with the number of pairs in which P is better. If 
these numbers are roughly the same, one would tend to 
think that H is correct: vitamin C looks no different from 
the placebo. On the other hand, if the two numbers are 

quite different, one would be inclined to question H. A 
much larger number of successes for C would suggest 
that C is indeed beneficial, whereas a much larger 
number of successes for P would suggest that C is 

detrimental; either result casts doubt on H. (It is common 

practice to see if H can be rejected without regard to the 
direction of the conclusion. For simplicity we will follow 
this convention, although similar results would be ob 
tained if we tested "no effect" versus "beneficial effect" 
or versus "detrimental effect.") 

Suppose the hypothetical experiment is conducted 
and it turns out that C is better in 13 pairs, with P thus 

being better in the remaining 4 pairs. Since these num 
bers are quite different, this is apparently evidence 

against the hypothesis of no effect. But how strong is the 
evidence? More precisely, how much should we doubt 

hypothesis H in light of this evidence? 
The first step of any statistical analysis is to formu 

late a model for the experiment. Consider the number of 

preferences for C?that is, the number of pairs in which 
vitamin C gave greater improvement. Under the null 

hypothesis, the probability of preference for C in a 

particular pair is the same as the probability of prefer 
ence for P; both probabilities equal \. The probability 
distribution of the total number of preferences for C is 
the same as the probability distribution of the number of 
heads in 17 coin tosses. (This assumes that the experi 
mental error for improvement of symptoms using either 
C or P has a symmetrical distribution and that the 
differences are independent from one pair to the next.) 
This distribution, called a "binomial distribution," is 
shown in Figure 1. In this case the probability of the 
actual outcome under H is the height of the bar over 13, 
which is only 0.0182. (We have been calling H a "precise 
hypothesis" because it corresponds to a particular proba 
bility distribution?here, the binomial distribution in 

Figure 1.) 
We will use this example to compare the standard 

statistical approach and the Bayesian approach. The 
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example is really more general than may be apparent, 
since it applies to experiments other than those concern 

ing the effect of treatment. For example, a preference for 
C is analogous to a correct prediction in an esp experi 
ment, a defective item in a quality control test, a success 
ful missile firing, and so on?any situation in which 
there are two possible outcomes. Moreover, our discus 
sion applies with only minor changes to experiments 

with multiple outcomes or continuous observations. 

The standard approach 
We will first consider the standard statistical approach, 
which uses "P-values," or "observed significance levels" 

(3). Figure 1 shows that the most likely result under the 
null hypothesis is 8 or 9 preferences for C, and that a 
result of 13 preferences for C is somewhat unexpected 

when H is true. Furthermore, as our earlier intuition 

suggested, the greater the distance from the middle of 
the distribution?8^?the smaller the probability of that 
number of preferences for C and hence the more doubt 
cast on H. This notion is important in constructing a P 
value. 

To understand the concept of a P-value, it may help 
to recall a familiar mathematical strategy: proof by con 
tradiction. Suppose you want to show that hypothesis H 
is wrong. To proceed by contradiction, assume that H is 
true and find a consequence R that logically follows from 

H yet is known to be false. This contradiction shows that 
H cannot be true. Standard statistical reasoning modifies 
this argument by replacing the requirement that R 
contradict H with the requirement 
that R and H be contradictory with 

high probability. More precisely, one 
calculates the probability of R assum 

ing that H is true; if this probability is 
small, then R and H are deemed to be 

contradictory with high probability. 
In standard statistics, H is the 

null hypothesis and R consists of the 
actual data observed along with 
"more extreme" data?possible ob 
servations that cast as much or more 
doubt on H than the actual observa 
tions. If we observe that R actually 
occurs but has small probability un 
der H, we have our highly probable 
contradiction. The following steps, 
illustrated in Figure 1, summarize the 

process leading to a P-value. (1) Iden 

tify the null hypothesis H and derive 
the probability distribution of the 

possible observations under H. (2) 
Let R denote the set of possible ob 
servations that cast as much or more 
doubt on H than do the actual data. 
In our example, R consists of those 

possible observations, shown in color 
in Figure 1, that are as far or farther 
from the center of the distribution 
than the actual data, 13. (3) Calculate 
the P-value, or observed significance 
level?the probability of R under the 

hypothesized distribution?by add 

ing the probabilities indicated by color in Figure 1. The 
result is 0.049 to three decimal places. 

The actual outcome of the experiment?13 prefer 
ences for C?determines R. Since the probability of R if 
vitamin C has no effect is 0.049, the standard statistical 
conclusion is that H is contradicted at the 0.049 probabili 
ty level. A smaller P-value implies a stronger contradic 
tion and hence stronger evidence against H. Conven 
tional practice among most users of statistics is to declare 
the results statistically significant when the P-value is 
less than 0.05. Implicit in this practice is the assumption 
that H is to be rejected when the P-value is less than 0.05 
and not rejected when it is greater than 0.05. This 
common statistical practice, with an inflexible cutoff at 
5%, is decried by most statisticians, even those who 
endorse the standard approach, and for a variety of 
reasons. However, most standard statisticians feel that it 
is objective, and that statistical significance at the 0.05 
level is fairly strong evidence against H. We will suggest 
that neither is necessarily true. 

Consider first the other controversial issue men 
tioned above, that of conditioning. The P-value calculat 
ed in the vitamin C experiment depends on the probabil 
ity of the data obtained?13 preferences for C?but it 
also depends on the probability of data not obtained?0, 
1, 2, 3, and 4 and 14, 15, 16, and 17 preferences for C. 
Our view, which is conditionalist, is that the probability 
of data not observed is irrelevant in making inferences 
from an experiment. Furthermore, we will show in the 
next section that the inclusion in R of unobserved data 
means that the resulting P-value greatly exaggerates the 

0.30h 

0.25r 

0.20h 

5 

50.15k 

0.101 

0.05h 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
Number of matched pairs 

Figure 2. The effect of the intentions of the investigator on the P-value is demonstrated by 
this graph, which shows the probability distribution of the number of matched pairs under 

hypothesis H when the vitamin C experiment is designed to end as soon as at least 4 Cs and 

4 Ps have been observed rather than after the treatment of 17 matched pairs. (The same 

distribution would result if a coin were tossed until at least 4 heads and 4 tails had been 

observed.) If the fourth P occurred at the seventeenth pair, the data observed?13 Cs and 4 

Ps?would be the same regardless of which design the investigator had in mind when he or 

she stopped the experiment. However, the P-value obtained by adding the probabilities of R 

(color) will now be 0.021 rather than the 0.049 calculated from the probabilities in Figure 1. 
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Figure 3. This graph of the final probability of hypothesis H as a 

function of p0?the upper limit on the probability that C will 

produce more improvement than P?indicates the dependence of 

the probability of H on the subjective choice of p0 in Bayesian 

analysis. The use of p0, however, frees the analysis from 

dependence on a hidden choice of unobserved data. With an 

initial probability of \, the final probability here is at least 0.21, 

demonstrating that there is at most mild evidence against H. Since 

the P-value in this example is less than 0.05, the clear indication is 

that a small P-value need not imply strong evidence against H. 

strength of the evidence against H. It is not possible to fix 
the problem by letting R contain only the actual data, 13, 
because it frequently happens that all individual data 

points have such small probabilities that every outcome 

would look "significant." 
Returning to the question of objectivity, consider 

the following modified design for the experiment. Rath 
er than observing precisely 17 matched pairs of subjects, 
suppose the investigator had decided to treat pairs until 

obtaining at least 4 pairs for which C is better and 4 for 
which P is better, and to stop as soon as this goal was 

attained. (Although such a design might seem arbitrary 
in this example, there are contexts in which it would be 

very reasonable.) Suppose the fourth P occurs on the 
17th measurement, so that the data turn out to be the 
same as before: 13 Cs and 4 Ps. Figure 2 shows that the 
P-value is now 0.021! This is less than half the P-value 
obtained previously, so one would presumably feel 

considerably more confident that H is wrong. 
But the physical reality is that the investigator 

performed a series of 17 measurements, obtaining 13 Cs 
and 4 Ps. Even if we monitored the experiment very 

closely, we might not know whether the investigator 
stopped at this point because the plan was to observe 

only 17 pairs or because the plan was to obtain at least 4 

Cs and 4 Ps. Or perhaps the investigator stopped the 

experiment because of a feeling that the evidence was 
now sufficient, or because of an impending appointment 
or a lack of additional research funds. P-values and 

many other standard statistical measures of evidence 

depend very strongly on such considerations. Indeed, if 
the investigator died after reporting the data but before 

reporting the design of the experiment, it would be 

impossible to calculate a P-value or other standard 
measures of evidence. 

Few nonstatisticians would ask about such matters. 
If they are presented with the actual data?13 Cs and 4 

Ps?and if they are fully aware of the physical details of 
the experiment, they may think it irrelevant to know 

whether the investigator decided to stop after observing 
17 pairs or after obtaining at least 4 Cs and 4 Ps. This 

would seem to base the conclusion on thoughts within 
the investigator's mind. We will indicate below how 
serious problems can be created by involving these 

thoughts in the analysis; for now we will merely observe 
that the need to consider such factors shows that stan 
dard methods are less objective than they at first appear. 

The Bayesian approach 
Many nonstatisticians mistakenly think that a P-value is 
the probability of the null hypothesis or, equivalently, 
the probability that one is making an error in rejecting 
the hypothesis. The example of the vitamin C experi 

ment provides a dramatic demonstration that this is not 
the case. The first step of this demonstration is to 

calculate the actual probability that the hypothesis is true 
in light of the data. This is the domain of Bayesian 
statistics, which processes data to produce "final proba 
bilities" (often called "posterior probabilities") for 

hypotheses. Thus the conclusion of a Bayesian analysis 
might be that the final probability of H is 0.30. 

The direct simplicity of such a statement compared 
with the convoluted reasoning necessary to interpret a P 
value is in itself a potent argument for Bayesian meth 
ods. Nothing is free, however, and the elegantly simple 
Bayesian conclusion requires additional input. To obtain 
the final probability of a hypothesis in light of the 
experimental data, it is necessary to specify the probabili 
ty of the hypothesis before or apart from the experimen 
tal data; these "initial probabilities" are also called "prior 
probabilities." In testing the hypothesis H that vitamin C 
has no effect, for example, one might state that before 
the experiment the probability that H is true is 0.9. 

Bayesian analysis then shows how this initial probability 
is altered by the data, obtaining a final probability for H. 

Where does this initial probability come from? The 
answer is simple: it must be subjectively chosen by the 

person interpreting the data. A person who doubts the 

hypothesis initially might choose a probability of 0.1; by 
contrast, someone who believes in it might choose 0.9. 

We would argue that a consideration of such initial 

probabilities is unavoidable in reaching a conclusion 
about the truth of H. The investigator, however, need 
not be concerned with the initial probability chosen by a 

possible consumer of the data; it suffices for the investi 

gator to show how the data will change this initial 

probability into a final probability. The mechanism for 

doing this is called the Bayes factor, which is essentially 
the odds against the hypothesis provided by the data (4). 

A measure equivalent to the Bayes factor and some 
what easier to understand is the final probability that 
results when the initial probability is \. Some Bayesian 
statisticians assert that starting with the conventional 
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choice of \ for the probability of H and its negation is 

objective, on the grounds that each hypothesis is being 
treated equally and the final probability is then deter 

mined only by the data (5). It is possible to argue that 

choosing an initial probability of \ is not objective; we 
shall not do so for the simple reason that there is an 

additional, unambiguously subjective input necessary 
for Bayesian analysis. 

To describe this input, let p stand for the probability 
that vitamin C produces more improvement than the 

placebo in a randomly selected individual. Clearly the 

hypothesis H that vitamin C has no effect corresponds to 

p 
= 

\, vitamin C has an effect if p Bayesian analysis 
also requires input concerning one's initial beliefs about 

p?in particular, an upper limit on p assuming that 
vitamin C is effective, which can be called p0. For 
instance, suppose one believes that vitamin C would at 
best be marginally effective, and chooses a p0 of 0.6. This 

corresponds to a belief that even if vitamin C is effective 

against a cold, it will be effective in only 20% more cases 
than will the placebo. Someone who felt that vitamin C 

would be highly effective might choose a p0 of 0.9. 

Figure 3 shows the final probability of H as a 
function of p0, assuming that the initial probability is \. It 
demonstrates that the final probability depends strongly 
on the choice of p0. Choosing a p0 of 0.6 results in a final 

probability of 0.41 for H, whereas choosing a p0 of 0.9 

gives 0.21. This dependence on p0 is inherent in Bayesian 
analysis and cannot be eliminated; one cannot state the 
final probability of H without this subjective input. (For a 

more detailed description of how the final probability is 
calculated in the light of p0 see the box below.) 

You may be uneasy about having to choose a p0 to 
determine what the data say about the hypothesis. You 

may find a P-value more appealing because it demands 
no such subjective input. There are two responses to 
this. First, we saw that hidden behind a P-value is the 
choice of what is to be considered to be the extreme data, 
and that this choice depends on what the investigator 
had in mind when stopping the experiment. Thus a 

standard statistical analysis depends on the subjective 
thoughts of the investigator. By contrast, the Bayesian 
conclusion depends on the subjective thoughts of the 
consumer of the experimental results. When you inter 

pret the data using Figure 3, your beliefs are relevant to 
the conclusion and the investigator's thoughts are irrele 
vant (although you could, of course, choose p0 in light of 
the opinions of the investigator or someone else whose 

judgment you value). This is as it should be. According 
to K. C. Cole, "science earns its reputation for objectivity 
by treating the perils of subjectivity with the greatest 
respect" (6). Bayesian statistics treats subjectivity with 

respect by placing it in the open and under the control of 
the consumer. 

The second response is that Bayesian final probabili 
ties in examples such as this are very different from P 
values. Although the final probability depends on p0, 
Figure 3 shows that it is always at least 0.21. Thus the 
data decrease the probability of H from \ to no less than 
0.21 and so provide at most mild evidence against the 

hypothesis of no effect. On the other hand, the P-value 
was less than 0.05, which is interpreted by many as 

significant evidence against H. This interpretation is 

simply wrong. We saw that a P-value provides only an 
indirect measurement of the evidence against a hypothe 
sis. Now we see that the direct evidence is very different. 

The reason P-values can be very deceptive is that 

they involve probabilities of the unobserved data that are 
more extreme than the observed data. The actual data for 
the vitamin C experiment were 13, yet the P-value in 
effect pretends that the set of data shown in color in 

Figure 1 is that data. The logic behind this step is weak, 
and we have now seen that the conclusion can be 

misleading (7). 
To be fair, we should point out that standard 

statisticians constantly reiterate that a P-value is not to be 

interpreted as a final probability. But consumers of data 
want a final probability; they want to know how probable 
it is that the hypothesis is true in light of the data. Since 
standard statistics cannot answer this question, and 
indeed gives no guidance in translating P-values into an 
answer to this question, it is difficult to blame consumers 
for taking the number provided?the P-value?and in 

terpreting it as an answer. 

Analysis of accumulating data 
The consequences of these issues are also evident in the 

analysis of accumulating data. Many experiments are 
conducted in stages, with data arriving at various times. 
Clinical trials are normally designed in this way, with 

subjects entering a trial and finishing treatment at differ 
ent times over a moderate to long period. It seems 
natural under these circumstances to monitor the incom 

ing data constantly, looking for early evidence of the 
success of one treatment or signs of problems such as 
adverse side effects, bad performance at one of the 

experimental sites, and so on. 
In standard statistics certain types of monitoring are 

permitted and even encouraged, but standard measures 
are valid only when the monitoring is carried out in 
certain narrow, prespecified ways. Simply by looking at 
the accumulating data with the possible intent of chang 
ing the experiment ?ending it, switching to a different 

Calculating the Final Probability of H 

In Figure 3, the final probability of H is calculated assuming that 
the initial probability that p = 0.5 (that is, that H is true) is \, and 
that the initial probability of \ tnat P ? ?-5 is uniformly distributed 
over the interval 1 - p0 to p0; the value of p0 is to be specified 
by the consumer of the experimental results, and represents the 

largest value of p that the consumer would reasonably anticipate. 
The final probability of H, in light of the observed data of 13 Cs 
and 4 Ps, is then given by 

1 
+To-?7 P13(1 -p)4dp 

(2p0- 1) J(1_Po) 

The use of the uniform density over the interval 1 - p0 to p0 is 
not as arbitrary as it might at first seem; the ensuing range of 
final probabilities shown in Figure 3 can be demonstrated to be 
identical to the range of final probabilities that would be obtained 
if the class of uniform densities was replaced by the class of all 

densities which are symmetric about \ ar|d nonincreasing away 
from \. Similar expressions and results would be obtained if the 
assumption of symmetry is dropped. 
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mix of treatments, ceasing to admit certain types of 

subjects, dropping an experimental site?an investigator 
affects standard statistical answers. By contrast, answers 
obtained using the Bayesian approach are not affected by 
the mere fact that the data are monitored, giving investi 

gators great flexibility in examining incoming data for 

surprises or early conclusiveness. 
To clarify the basic issues, suppose that, instead of 

designing the vitamin C experiment to consist of precise 
ly 17 observations, we had decided to use a two-stage 
design. In the first stage, 17 pairs would be observed. If 
the number of preferences for C is 0, 1, 2, 3, or 4 or 13, 
14, 15, 16, or 17, we would conclude that we had 
sufficient evidence against H and stop the experiment. 
Recall that the probability of this happening when H is 
true is only 0.049. If one of these outcomes?0 to 4 or 13 
to 17? does not occur, we would observe an additional 
27 pairs, for a total of 44 pairs, concluding that there is 
sufficent evidence against H if the total number of 

preferences for C is less than 16 or more than 28. (We 
chose this particular design for the second stage because 
the probability of observing less than 16 or more than 28 

preferences if the sample of 44 pairs is fixed in advance 
also happens to be 0.049.) 

The point of such a design, shown in Figure 4, is to 
allow the experiment to stop should conclusive evidence 
be present in the first 17 observations, but to allow 
additional observations otherwise. What would have 

happened in the vitamin C experiment if this design had 
been used? Precisely what did happen: a finding of 13 

preferences for C after 17 observations would have 
resulted in the stopping of the experiment and the 

rejection of H. The two-stage design would have had no 

physical effect on the data observed; the design could, 
indeed, be seen as merely a contingency plan to cover a 

possibility?inconclusive evidence at the end of stage 
one?that did not materialize. Should this unused plan 
affect the conclusion reached from the actual data? 

Bayesian final probabilities depend only on the observed 
data and so are not affected, but P-values are affected. 

To see this, recall the basic process for arriving at a 
P-value. One assumes that H is true, calculates the 

probability of the set of possible data which would cast 
as much or more doubt on H than the observed data, 
and claims significant evidence against H it this probabil 
ity is small enough. The set R* of more extreme observa 
tions in the two-stage design, indicated in color in Figure 
4, equals the set R of more extreme observations for the 

one-stage design (n 
= 

17) plus the more extreme obser 
vations at the second stage (n 

= 
44). Since R is contained 

in R*, it is clear that R* has a larger probability and hence 
is less "significant." The probability of hitting the colored 

part of Figure 4 after 17 observations or, failing that, after 
44 observations, turns out to be 0.085. This is substantial 

ly larger than the P-value of 0.049 obtained under the 

assumption that exactly 17 pairs would be observed. 

According to common practice, one could thus claim 
statistical significance if a single stage with a sample of 17 
had been planned?but not if the two-stage design had 
been contemplated. Although the fact that a second 

stage was contemplated had absolutely no effect on the 
data actually obtained, it drastically alters the conclusion. 

The puzzle of why consideration of a second stage 
should matter when the experiment stops at the first 

6 r 
10 11 

13 i 

18 19 20 21 22 23 24 25 26 27 28 29 
'31 32 

'34 35 36 37 

Preferences for C (n 
~ 

44) 

38 ?9 40 47 42 43 44 

6 8 9 10 11 12 13^ 14 ? 16 17 
Preferences for C [n 

= 
17) ?i? " 

Figure 4. If the design of the vitamin C experiment is modified to allow the experiment to stop if conclusive evidence is present in the first 

17 observations but otherwise to continue to 44 observations, Bayesian final probabilities would not be affected. P-values, by contrast, would 

reflect the fact that further testing was contemplated even if this additional testing was not carried out. Although the P-value for an 

experiment designed in advance to examine just 17 pairs or just 44 pairs is 0.049, the overall P-value for the two-stage design is 0.085. 
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stage becomes still more pronounced when we recog 
nize that even more stages could have been planned. For 

example, a third set of observations might have been 

contemplated if the data were not conclusive at the end 
of the second stage, and so on. This would result in an 
even larger P-value, in spite of the fact that the experi 
ment would still stop at the first stage with the actual 
data. Indeed, if the number of stages contemplated was 

very large, the P-value could be arbitrarily close to 1.0 
even though the same data would be statistically signifi 
cant had only a single stage been planned. 

We are not suggesting that it is an error to consider 
the intentions of an investigator when calculating P 
values; the nature of P-values demands consideration of 

any intentions, realized or not. Rather, we are arguing 
that the important role played by considerations that 
should be irrelevant indicates a potentially serious flaw 
in the logic behind the use of P-values and other 
standard measures of evidence. Bayesian final probabili 
ties do not depend on the unrealized intentions of the 

investigator; only the actual data obtained matter. 
When standard statistical measures such as P-values 

are used, every detail of the design, including responses 
to all possible surprises in the incoming data, must be 

planned in advance. Any deviation from this design, 
such as an unplanned decision to stop a clinical trial for 
the treatment of athlete's foot because the first 30 pa 
tients have lost their toenails, eliminates the possibility of 

using P-values to draw conclusions from the data ob 
tained. Bayesian measures, on the other hand, remain 
valid in such circumstances and thus allow much greater 
flexibility. Many investigators conduct experiments with 

complete flexibility, stopping, for example, when they 
think the results are conclusive. As Bayesian statisticians 

we condone this practice, but we caution that standard 
statistical measures such as P-values and confidence 
intervals then have no valid interpretations. The investi 

gator who adopts such flexibility cannot use the methods 
of standard statistics. 

The role of subjectivity 
Our basic thesis has been that objectivity is not generally 
possible in statistics and that standard statistical methods 
can produce misleading inferences. Specifically, we 

questioned the results obtained by standard methods in 

testing precise hypotheses and analyzing accumulating 
data. We have indicated that the Bayesian final probabili 
ty of a precise hypothesis H is typically much larger than 
the P-value; interpreting a moderately small P-value in 
such situations as strong evidence against H is thus 

wrong. This raises questions concerning the validity of 

previous scientific findings based on moderately small P 
values for precise hypotheses. 

The advantages of acknowledging the role of subjec 
tivity and adopting Bayesian methods are substantial. 

Bayesian probabilities can be calculated as the experi 
ment proceeds and reported to others at any time. The 

experimental plan can be modified at any time without 

losing the opportunity to draw valid statistical conclu 
sions. Other possible experiments can be evaluated and 

planned on the basis of current probabilities, maximizing 
the amount of information to be gained at a fixed cost. 
The results of different experiments can be combined to 

arrive at an overall Bayesian calculation of final probabili 
ty. Finally, in many problems arising in fields such as 

medicine, business, or engineering, it can be vitally 
important to involve the subjective information pos 
sessed by the decision-maker, who is often an expert in 
the area; Bayesian analysis is ideally suited for this task. 

Two qualifications are in order. In many situations 

?especially those in which there are large amounts of 

data?reasonably objective summaries of the evidence 
contained in the data can be constructed using either 
standard or Bayesian methods. In fact, a version of 

Bayesian analysis has been developed which specifically 
attempts to provide objective summaries (8). The idea is 
to specify very vague initial beliefs, so that final probabil 
ities are influenced almost solely by the data. But there 
nevertheless remain some important situations, such as 
the testing of precise hypotheses, where even approxi 

mate objectivity is not attainable. A second qualification 
was mentioned earlier: although we have naturally 
emphasized the differences between standard and 

Bayesian methods, there are many instances where the 
two approaches give very similar results. Standard esti 

mation procedures and tests of "diffuse" hypotheses, for 

example, frequently yield answers which have a valid 

Bayesian interpretation. 
Statistical analysis plays a central role in scientific 

inquiry. The adoption of today's statistical methods has 
led to enormous improvements in the understanding of 

experimental evidence. But common usage of statistics 
seems to have become fossilized, mainly because of the 
view that standard statistics is the objective way to 

analyze data. Discarding this notion, and indeed em 

bracing the need for subjectivity through Bayesian analy 
sis, can lead to more flexible, powerful, and understand 
able analysis of data. 
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