
MACRO E CO LOG I C A L ME THOD S

Paintings predict the distribution of species, or the challenge of
selecting environmental predictors and evaluation statistics

Yoan Fourcade1,2 | Aur�elien G. Besnard1,3 | Jean Secondi1,4,5

1GECCO (Group of ecology and

conservation of vertebrates), Universit�e

d’Angers, Angers, France
2Department of Ecology, Swedish University

of Agricultural Sciences, Uppsala, Sweden

3LPO Aquitaine, Villenave d’Ornon, France

4UMR CNRS 5023 LEHNA, University

Lyon 1, Lyon, France

5UMR CNRS 6554 LETG-LEESA, Universit�e

d’Angers, Angers, France

Correspondence

Yoan Fourcade, Department of Ecology,

Swedish University of Agricultural Sciences,

Box 7044, 75007, Uppsala, Sweden.

Email: yoanfourcade@gmail.com

Funding information

Plan Loire Grandeur Nature; European

Regional Development Fund (ERDF);

R�egion des Pays de la Loire; Agence de

l’eau Loire-Bretagne; Angers Loire

M�etropole; Direction R�egionale de l’Envir-

onnement; de l’Am�enagement et du Loge-

ment (DREAL) du bassin de la Loire;

D�epartement du Maine-et-Loire

Editor: Michael Borregaard

Abstract

Aim: Species distribution modelling, a family of statistical methods that predicts species distribu-

tions from a set of occurrences and environmental predictors, is now routinely applied in many

macroecological studies. However, the reliability of evaluation metrics usually employed to validate

these models remains questioned. Moreover, the emergence of online databases of environmental

variables with global coverage, especially climatic, has favoured the use of the same set of standard

predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of

the species’ ecology. In this context, our aim was to highlight the importance of selecting ad hoc

variables in species distribution models, and to assess the ability of classical evaluation statistics to

identify models with no biological realism.

Innovation: First, we reviewed the current practices in the field of species distribution modelling

in terms of variable selection and model evaluation. Then, we computed distribution models of

509 European species using pseudo-predictors derived from paintings or using a real set of climatic

and topographic predictors. We calculated model performance based on the area under the

receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training

and test data with different levels of spatial independence. Most models computed from pseudo-

predictors were classified as good and sometimes were even better evaluated than models com-

puted using real environmental variables. However, on average they were better discriminated

when the partitioning of occurrences allowed testing for model transferability.

Main conclusions: These findings confirm the crucial importance of variable selection and the

inability of current evaluation metrics to assess the biological significance of distribution models.

We recommend that researchers carefully select variables according to the species’ ecology and

evaluate models only according to their capacity to be transfered in distant areas. Nevertheless,

statistics of model evaluations must still be interpreted with great caution.

K E YWORD S

AUC, environmental predictors, environmental variables, MaxEnt, model evaluation, ROC curve,

species distribution modelling, TSS

1 | INTRODUCTION

Species distribution models (SDMs) have become in recent years one

of the most widely used tools in macroecology. The principle of SDMs

is to correlate species occurrences and environmental layers to build

statistical inferences about the processes driving species’ niches, and

eventually derive suitability maps (Elith & Leathwick, 2009). This family

of methods has a broad range of applications, including the study of

niche evolution (Warren, Glor, & Turelli, 2008) and the delineation of

conservation areas (Esselman & Allan, 2011). When models are pro-

jected in space and time, they can predict range shifts under climate

change (Hijmans & Graham, 2006) or estimate the potential expansion

of invasive species (Jim�enez-Valverde, Peterson et al., 2011). The avail-

ability of large biodiversity (Edwards, Lane, & Nielsen, 2000) and envi-

ronmental (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) databases,

in combination with the release of user-friendly and powerful SDM
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algorithms, has stimulated an exponential growth of SDM studies

(Lobo, Jim�enez-Valverde, & Hortal, 2010). As it is now a standard tool

to inform conservation decisions (Guisan et al., 2013), it is critical to

ensure that key aspects of the modelling workflow, such as variable

selection and model performance assessment, can be adequately con-

trolled and evaluated.

The choice of environmental predictors to include in the model is a

crucial step in setting up SDMs. Machine-learning algorithms can in

theory handle a large number of predictors and identify which ones are

important via regularization (Elith et al., 2011). However, the output of

SDMs can vary substantially depending on whether a subset of varia-

bles is pre-selected or not, especially when models are projected into

new environments (R€odder, Schmidtlein, Veith, & L€otters, 2009; Synes

& Osborne, 2011). A prevailing recommendation is to explore the cor-

relation between predictors and select them to avoid multicollinearity

(Braunisch et al., 2013). Generally, SDMs built from variables that are

only incidentally or indirectly linked to a species’ distribution can suc-

cessfully fit their present-day range (Dormann et al., 2012). However, if

the objective is to reveal the environmental drivers underlying a spe-

cies’ distribution, or to transfer the model to new areas, rigorously

selecting relevant predictors according to the species’ ecology is imper-

ative (Petitpierre, Broennimann, Kueffer, Daehler, & Guisan, 2017).

It is generally assumed that climate is the main driver of species

distributions at large spatial scales (Sober�on, 2007). The 19 bioclimatic

variables available as part of the Worldclim project (Hijmans et al.,

2005) provide a source of supposedly biologically relevant climate data

that can be integrated readily into SDM workflows. Booth, Nix, Busby,

and Hutchinson (2014) found that, among the studies that imple-

mented MAXENT (Phillips, Anderson, & Schapire, 2006) as the SDM

algorithm, 76% used bioclimatic variables as environmental predictors

and 55% used all the 19 variables. The same pattern was observed by

Bradie and Leung (2017) and Porfirio et al. (2014) who identified biocli-

matic variables and elevation as the most commonly employed predic-

tors in SDM studies. Although this standard set of 19 bioclimatic

variables is frequently selected for modelling species’ distributions, it is

recognized that climatic factors are unable to describe in all their com-

plexity the processes that limit species’ ranges (Pearson & Dawson,

2003). It has also been suggested that the apparent correlation

between climate and species’ distributions may partly reflect the spatial

structure of climate rather than a real biological process (Bahn & Mcgill,

2007; Beale, Lennon, & Gimona, 2008; Chapman, 2010). As it can be

difficult to anticipate precisely the factors that drive a species’ distribu-

tion, it is essential that the performance and the biological significance

of SDMs can be evaluated to avoid drawing inferences from irrelevant

environmental variables.

Post-hoc evaluation of distribution models is commonly performed

to assess their predictive performance and statistical significance

(Peterson et al., 2011). The most common diagnostic metrics in the area

of SDMs is the area under the receiver operating curve (ROC) (AUC;

Porfirio et al., 2014), obtained by plotting the model sensitivity against

its false positive rate at all possible thresholds (Hanley & McNeil, 1982).

Originally developed to assess the discrimination ability of radar sys-

tems or medical diagnostics, it has been widely adopted by the SDM

community to measure the performance of models in discriminating

between presences and absences of species (Lobo, Jim�enez-Valverde, &

Real, 2008). AUC has been adapted to presence-only (or presence–

background) modelling approaches by comparing the predicted suitabil-

ity at presence points versus background points taken from the training

area. In this context, the implementation of AUC in a SDM framework

is usually carried out by partitioning species occurrences into two sets:

a training dataset, which is used to compute the model, and a test data-

set that is used thereafter to evaluate the model’s discrimination ability

(Fielding & Bell, 1997). This process can be repeated several times, each

partition being used alternately to train and to test the model. This

approach assumes that training and testing data are spatially independ-

ent, an assumption rarely fully met in practice, especially when occur-

rences are randomly partitioned (Veloz, 2009). Moreover, AUC has

been recognized as a highly questionable measure for several years

(Lobo et al., 2008), especially when used with background data instead

of true absences (Jim�enez-Valverde, 2012). Many alternative metrics

have been proposed to evaluate SDMs (see for example Allouche,

Tsoar, & Kadmon, 2006; Hijmans, 2012; Phillips & Elith, 2010). How-

ever, despite these criticisms, so far none of these alternatives seems to

have taken over from AUC in most SDM studies.

In this context, the use of improper environmental predictors in

SDMs may remain overlooked if the statistics used to assess their per-

formance are unable to distinguish models with no biological realism.

Here, our aim was to study how much these issues can interact to bias

inferences based on species distribution models, and to investigate

potential solutions to overcome them. We first reviewed the current

practice in the field of SDMs in terms of variable selection and model

evaluation. Second, we evaluated the performance of SDMs built from

meaningless predictors according to classical SDM evaluation statistics

[AUC and also the true skill statistics (TSS, Allouche et al., 2006), often

recommended as an alternative to AUC]. Instead of computing spatial

null models (Bahn & Mcgill, 2007; Beale et al., 2008) or simulated cli-

mate data (Chapman, 2010), our approach consisted of using com-

pletely meaningless variables derived from paintings, not selected

based on any prior criterion. We then compared the evaluation of

SDMs built using these pseudo-predictors with SDMs built using real

environmental variables often used in empirical SDM studies (biocli-

matic variables and elevation). When evaluating SDM outputs, we

tested various approaches to partitioning occurrences that provide dif-

ferent levels of spatial independence between both, and assessed

whether one of those strategies better discriminated meaningless mod-

els from those computed using real environmental predictors.

2 | METHODS

2.1 | Review of current practices in species

distribution modelling

In order to characterize the current practices regarding variable selec-

tion and model evaluation in SDMs, we conducted a literature review

of modelling papers published in the last few years in the four leading

journals of macroecology and biogeography: Global Ecology and
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Biogeography, Journal of Biogeography, Diversity and Distributions and

Ecography (Figure 1). Specifically, we restrained our analysis to articles

that cited at least one of the two main references for MAXENT, the

most widely used SDM method: Phillips et al. (2006) and Phillips and

Dudík (2008). We used Web of Science (® Thomson Reuters) to down-

load all corresponding articles published from 2012 (queried on 22

June 2016) in the selected journals. We surveyed 246 articles, from

which we manually excluded 36 because they were not empirical mod-

elling studies or because they focused on evaluating the performance

of various types of environmental predictors. All the 210 remaining

studies were kept for the description of SDM evaluation methods but,

as our aim was mainly to describe the use of bioclimatic variables, 20

additional studies on marine organisms were discarded for the analysis

of variable choice. For the selected papers, we recorded the methods

used to evaluate the performance of SDMs, the variables included in

the models and how they were selected. Specifically, we noted

whether authors selected their variables based on a statistical method

(most often by selecting the least correlated ones) and whether they

provided a clear biological justification of the choice of the environ-

mental predictors. For the latter criterion, we considered predictor

selection as being biologically motivated if it was associated with a

description of the species’ biology/ecology, and supported by referen-

ces. Studies that provided only a vague statement such as ‘we believe

that these variables are relevant for the species’, or ‘climate is thought

to be the main driver of species’ distributions’ were classified as being

partially justified. We additionally performed a correspondence analysis

to describe the differences between journals.

2.2 | Species occurrences datasets

We used the datasets from 497 species listed on the European Red

List, an assessment of the conservation status of c. 6000 Western

Palaearctic species. Occurrences were downloaded from the Global

Biodiversity Information Facility database (GBIF, http://www.gbif.org).

We selected species for which between 500 and 2000 presence points

were available, and kept only the records with valid coordinates. To

avoid sampling bias that may affect the models’ outputs (Syfert, Smith,

& Coomes, 2013), we used the procedure implemented in the spThin

(Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson, 2015) R

package, which consists of a spatial thinning of occurrence records, or

spatial filtering (Fourcade, Engler, R€odder, & Secondi, 2014). Using a

randomization approach, spThin returned a dataset containing the max-

imum number of occurrences separated by a user-defined minimum

neighbour distance. The optimal distance that substantially reduces

sampling bias while keeping a sufficient amount of information is chal-

lenging to assess, especially as we dealt with a large number of species.

Thus, we used a conservative measure for all species, defined as the

maximum distance between two occurrences divided by 20. This filter-

ing distance appeared visually to provide a reasonable trade-off at vari-

ous spatial scales (Supporting Information Figure S1). The final set of

497 species and their number of occurrences before and after spatial

filtering (mean544; min510; max5245) are given in Supporting

Information Table S1.

2.3 | Environmental variables and pseudo-predictors

We first aimed at building a model based on predictors that were

potentially biologically relevant and widely used in SDM studies (Booth

et al., 2014; Bradie & Leung, 2017; Porfirio et al., 2014 and see

Results). We used the full set of 19 bioclimatic variables and the altitu-

dinal grid available from the Worldclim database (Hijmans et al., 2005)

at 10 arc-minute resolution and rescaled to 20 arc-minute resolution

(Supporting Information Figure S2). As we aimed at modelling distribu-

tions at the European scale, each grid was cropped between 210 to

708 longitude and 30 to 758 latitude.

A set of 20 pseudo-predictors (Figure 2 and Supporting Informa-

tion Figure S3) was additionally created. We downloaded image files by

performing a request on the Google Image® search engine (http://

images.google.com) with the term ‘classical paintings’, searching only

files with a ‘large size’ according to the search tool. Twenty files, in jpeg

format, were selected among the first hits. Each image file was mapped

on the European geographical space using the following protocol: files

were imported into R 3.0.2 (R Development Core Team, 2015) using

the ‘raster’ function in the eponymous package (Hijmans, 2014). By

default, this function imports the red component of images, coded as

values ranging from 0 to 255. Thereafter, we matched the spatial

extent and resolution of each picture with the real environmental pre-

dictors using the ‘extent’ and ‘resample’ functions of the raster R pack-

age. Finally, a mask was applied to crop each of these pseudo-

predictors to European land surfaces.

2.4 | Species distribution modelling

In order to avoid the problems associated with multicollinearity among

predictors (Braunisch et al., 2013), and as we are not interested in the

variables’ responses, we computed a principal components analysis (PCA)

for each dataset (Dormann et al., 2013). As the 12 first principal compo-

nents were needed to explain at least 80% of the paintings-based predic-

tors’ variance, we ran SDMs for each species using as environmental

predictors the 12 first PCA axes derived from: (a) the 20 real environmen-

tal predictors and (b) the 20 pseudo-predictors derived from the paint-

ings. In addition, to test how much the number of bioclimatic variables

included in the models affected our results, we also computed SDMs for

100 randomly selected species using 2 to 19 predictors (keeping the least

correlated ones), both for bioclimatic variables and for pseudo-predictors.

We used the method implemented in MAXENT version 3.3.3k

(Phillips et al., 2006), with species-specific settings selected using the

ENMeval (Muscarella et al., 2014) R package. The approach implemented

in ENMeval runs successively several MAXENT models using different

combinations of parameters to select the settings that optimize the

trade-off between goodness-of-fit and overfitting. Here, we set

ENMeval to test regularization values between 0.5 and 4, with 0.5 steps,

as well as the following feature classes: linear, linear1 quadratic, hinge,

linear1 quadratic1 hinge, linear1 quadratic1 hinge1 product and line-

ar1quadratic1 hinge1product1 threshold, which corresponds to the

default ENMeval settings. The extent of the training area, that is, the

portion of environmental grids from which background points are
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sampled, should correspond to the extent actually accessible for the spe-

cies, so that its absence in this region reflects the effect of environmen-

tal factors (Barve et al., 2011). In order to keep a comparable definition

of the training area among species, we created buffers around all occur-

rences with a radius equal to half the maximum distance between points.

Two thousand points were selected from within the area of each buffer

and used as background points in the ENMeval workflow. All MAXENT

models were run with the 48 combinations of settings, and we selected

the one that had the lowest corrected Akaike information criterion

(AICc; Burnham & Anderson, 2002) for further analyses.

2.5 | Training/testing partitioning and model

evaluation

SDM evaluation was performed by partitioning occurrences into training

and testing datasets in order to report the AUC both for models com-

puted with real environmental variables (AUCe) and with paintings-

derived pseudo-predictors (AUCp). AUC is 0 when there is a total mis-

match between model predictions of presence and the actual data and 1

for models with perfect discrimination abilities. A value of 0.5 indicates

that the model does not perform better than any model with a set of ran-

dom predictors. Additionally, we computed the TSS (also known as the

Youden index), a threshold-dependent evaluation metric (Allouche et al.,

2006; Youden, 1950), calculated as sensitivity1 specificity 2 1. The

threshold for converting continuous maps to binary predictions was set

to maximize the model specificity and sensitivity, as recommended by Liu,

White, and Newell (2013). Again, values were reported for models com-

puted with environmental (TSSe) and paintings (TSSp) variables. In each

case, the occurrence dataset was divided into four bins, used in a cross-

validation approach where each bin was used in turn as test points while

the three others were used to train the model. Evaluation metrics were

then averaged across the four possible pairs of training/test datasets.

In order to test the effect of various methods of training/testing par-

titioning, we adopted four approaches that provided different levels of

spatial independence between training and testing datasets (Figure 3).

First, we simply randomly divided occurrences into four groups. Second,

we performed three types of spatially structured partitioning. The two

first ones are variations of the ‘checkerboard’ approach implemented in

ENMeval (Muscarella et al., 2014): the geographical space was first trans-

formed into a checkerboard-like grid by applying an aggregation factor to

the original grid resolution. A second, twofold coarser, independent

checkerboard-like grid, was then applied on top of the first one. The com-

bination of both levels of partitioning allowed the division of occurrences

into four bins [see Muscarella et al. (2014) and Figure 3 for more details].

This ‘checkerboard’ approach was tested for two spatial grains: with an

aggregation factor of two as ENMeval uses this as the default value (fine-

resolution checkerboard), and with an aggregation factor of four (coarse-

resolution checkerboard). Finally, we implemented the ‘block’ approach of

ENMeval that partitions occurrences according to their longitude and lati-

tude, as recommended by Radosavljevic and Anderson (2014). It results

in four geographically non-overlapping bins of equal numbers of occur-

rences, corresponding to each corner of the geographical space. In this

approach, as well as in both ‘checkerboard’ approaches, background

points were also split following the same spatial partitions (corners or

checkerboard cells). Then, at each modelling step, the model was trained

without thebackground points located in the same area as the test

points. The ‘block’ method provides the best spatial independence

between training and testing datasets that can be obtained from parti-

tioning a unique dataset. Therefore, this method quantifies the ability of

the models to extrapolate their predictions into new areas.

FIGURE 1 Venn diagrams illustrating current practices in species distribution modelling (data from articles that cite MAXENT in the four
leading journals of macroecology and biogeography, from 2012). (a) Use of bioclimatic variables (blue ellipse) versus all other types of
variables (orange ellipses), and variable selection. Dotted and dashed ellipses: biologically motivated selection; plain white ellipse: statistical
selection. The distribution of the number of bioclimatic variables incorporated in studies that used them is shown in the bottom-left inset.
(b) Use of various evaluation metrics, including area under the receiver operating curve (AUC; green ellipse) and metrics that were present
in more than 5% of the reviewed papers (other methods are grouped under the blue ellipse). Note that due to the number of groups and
the presence of zeros, the area of each ellipse is not proportional to the number of cases. TSS5 true skill statistics
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We used repeated measures ANOVA and post-hoc Tukey tests to

test whether AUC and TSS values, and the differences between model

evaluations based on paintings and real environmental variables, signifi-

cantly differed between these different partitioning strategies. We also

reported the correlation between AUCe and AUCp, and between TSSe

and TSSp, using linear regressions.

3 | RESULTS

3.1 | Current practices in species distribution

modelling

Among the 190 studies that modelled terrestrial organisms, 167

(87.9%) included at least one of the 19 classical bioclimatic variables,

including 38 (20%) that used all the 19 variables. A total of 102 articles

(53.7%) used another set of variables instead of (23, 12.1%) or in addi-

tion to (80, 42.1%) bioclimatic variables (Figure 1a). These other

variables included, for example, predictors linked to topography (the

most common: 55 studies, 28.9%), other climatic variables (23, 12.1%),

vegetation cover or productivity (21, 11.1%), land cover (21, 11.1%) or

soil characteristics (20, 10.5%). The selection of the environmental vari-

ables was biologically motivated in 105 papers (50.0%), including 64

(30.5%) that provided at least one citation to justify the inclusion of

one or several variables, and 41 other articles (19.5%) that provided

only a vague justification. Moreover, 88 studies (41.9%) selected varia-

bles based on a statistical criterion (correlation between predictors or

occasionally model selection) instead of, or in addition to, selection

based on the biology/ecology of the species (Figure 1a).

Among all the 210 scanned articles, 169 (80.5%) used the AUC to

evaluate SDMs, including 117 (55.7%) that used only AUC (Figure 1b).

The next most commonly used evaluations were three threshold-

dependent metrics: the TSS (20, 9.5%), the omission rate (17, 8.1%) and

the model sensitivity (13, 6.2%). Various other methods of evaluation,

including for example Kappa, specificity, commission rate or overall

Pseudo-predictors
(paintings)

Environmental predictors
(climate and topography)

P
C

A
R
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bl
es

S
D

M

AUCp = 0.85; TSSp = 0.67 AUCe = 0.83; TSSe = 0.64 

FIGURE 2 Workflow used in analyses: 20 pseudo-predictors were created from the projection of paintings on the Western Palaearctic
geographical space (examples: top: John Singer Sargent, Blonde Model, bottom: Zhang Daqian, Spring dawns upon the colorful hills) and were
used to compute species distribution models (SDMs) after principal components analysis (PCA). A set of 20 true environmental variables
(climate and topography) was also used to compute SDMs for the same species. Both types of models were evaluated using area under the
receiver operating curve (AUC) and true skill statistics (TSS). The SDMs presented at the bottom show the example of a species (Candidula
unifasciata, a land snail species) for which the SDM computed with pseudo-predictors led to better evaluation metrics (here computed by
randomly splitting occurrences into training and testing datasets) than that computed with real environmental variables (suitability increases
from blue to red). AUCp5AUC for model computed with paintings-derived pseudo-predictors; AUCe5AUC for model computed with real
environmental variables; TSSp5TSS for model computed with paintings-derived pseudo-predictors; TSSe5TSS for model computed with
real environmental variables
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accuracy, were present in less than 5% of all articles reviewed. About a

quarter of all articles (53, 25.2%) used several evaluation measures,

58.6% (123) used only one method of evaluation and 16.1% (34) did not

evaluate their models, or at least did not report it (Figure 1b).

There was no marked difference in terms of variable selection and

model evaluation between journals (Supporting Information Figure S4).

However, a noticeable pattern is the tendency for articles published in

Journal of Biogeography to use on average a higher number of

FIGURE 3 Schematic representation of the four approaches for partitioning occurrences into training and testing datasets (left column).
For spatially structured methods, the greyscale grid shows the division of the geographical space that defines how occurrences are split into
four bins. The central and right columns show the corresponding distribution of evaluation metrics [area under the receiver operating curve
(AUC) and true skill statistics (TSS), respectively] for models trained using pseudo-predictors derived from paintings (dark grey) or from real
environmental variables (white, with overlap in light grey). Vertical dotted lines on top of AUC distributions represent the usual classification
of AUC by Ara�ujo et al. (2005), adapted from Swets (1988)

6 | FOURCADE ET AL.



bioclimatic variables compared to the other journals. For example,

among the 25 studies (13.2%) that used the whole set of 19 bioclimatic

variables as only predictors, 20 were published in Journal of Biogeogra-

phy. In addition, all but one of the 15 studies that used the 19 biocli-

matic variables as the only predictors and AUC as the only evaluation

measure were published in Journal of Biogeography.

3.2 | Effect of the type of predictor and the

partitioning approach on model evaluation

Overall, the performance of SDMs computed from real environmental

variables differed depending on the approach used to partition occur-

rences into testing and training datasets, according to both AUCe

(F3,1488569.09, p< .001) and TSSe: (F3,1488521.13, p< .001). Post-

hoc comparisons (Tukey honest significant difference (HSD) tests)

showed that the random (mean AUCe50.8560.0026 SEM, mean

TSSe50.6660.0043 SEM) and fine-resolution ‘checkerboard’ (mean

AUCe50.8560.0029 SEM, mean TSSe50.6660.0045 SEM) meth-

ods led to similar AUCe (p51) and TSSe (p51). Using the standard

classification of AUC of Ara�ujo, Pearson, Thuiller, and Erhard (2005),

adapted from Swets (1988), more than 85% of these models were clas-

sified as ‘good’ (AUCe>0.8) or ‘excellent’ (AUCe>0.9) (Figure 3).

However, models evaluated using the ‘block’ method had significantly

lower AUCe (mean50.8360.0032 SEM) and TSSe (mean50.646

0.0048 SEM) than all other methods (p< .001 for all pairwise compari-

sons), and only 68% of them were classified as ‘good’ or ‘excellent’

based on their AUCe. Evaluations provided by the coarse-resolution

‘checkerboard’ approach were intermediate. AUCe (mean50.846

0.0028 SEM) was in this case significantly higher than for the ‘block’

method (p< .001) and lower than for the fine-resolution ‘checkerboard’

and the random partitioning methods (p50.01 and p50.001, respec-

tively), which led to 81% of models being classified at least as ‘good’.

TSSe (mean50.6560.0043 SEM), however, was significantly higher

than for models evaluated with the ‘block’ method (p< .001), but did

not differ with other partitioning approaches (p5 .06 with the fine-

resolution ‘checkerboard’ method and p< .001 with the random

partitioning).

Models trained from pseudo-predictors showed the same pattern:

AUCp and TSSp values differed depending on the partitioning method

(AUCp: F3,14885138.87, p< .001, TSSp: F3,1488558.73, p< .001). It

was again driven by a lower evaluation score of SDMs with the ‘block’

method (mean AUCp50.7860.0036 SEM, mean TSSp50.576

0.0055 SEM, p< .001 compared to all other methods) that led to 48%

of models being classified at least as ‘good’ (Figure 3). In contrast, the

random (mean AUCe50.8260.0029 SEM, mean TSSp50.616

0.0047 SEM) and fine-scale ‘checkerboard’ (mean AUCe50.826

0.0031 SEM, mean TSSe50.6160.0049 SEM) methods did not differ

in their AUCp (p51) or TSSp (p51), and 71 and 74%, respectively, of

these models were classified as ‘good’ or ‘excellent’. Again, the

coarse-scale ‘checkerboard’ evaluation led to intermediate AUCp

(mean50.8160.0034 SEM; P<0.001 with all other methods; 69% of

models had AUCp>0.8) and TSSp values (mean50.6060.0047 SEM;

p5 .07 with the fine-resolution ‘checkerboard’ method, p5 .28 with

the random partitioning and p5 .06 with the ‘block’ method).

AUCe and AUCp, as well as TSSp and AUCp, were significantly

correlated in all cases (Supporting Information Figure S5), but this

relationship was weaker when models were evaluated with the

‘block’ approach (AUC: R25 .06; TSS: R25 .11, compared to R2> .15

for other partitioning methods). Even though on average, AUCp and

TSSp values were lower than AUCe and TSSe (Wilcoxon tests,

p< .001 for all approaches), whatever the partitioning method,

around 30% of models had a higher AUC and TSS when pseudo-

predictors rather than real environmental variables were used. How-

ever, for a given species, AUCe was higher than AUCp by 6.5% (6

0.63% SEM) on average using the ‘block’ method of occurrence par-

titioning (Figure 4). This was significantly higher than the average of

4.2% (6 0.44% SEM), 4.4% (6 0.47% SEM) and 4.9% (6 0.53% SEM)

for the random and the fine- and coarse-resolution ‘checkerboard’

approaches, respectively (ANOVA: F3,1488514.98, p< .001, post-

hoc Tukey tests: p always< .001). Pairwise comparisons showed

however that the difference between AUCp and AUCe was similar

for the random and both ‘checkerboard’ approaches (p> .36;

Figure 4). On the contrary, the difference in TSS between models

based on real environmental variables and from pseudo-predictors

did not significantly differ between partitioning approaches

(ANOVA: F3, 148851.61, p5 .19). Still, the ‘block’ method tended to

provide a higher (non-significant) improvement in TSSe compared to

TSSp (27.8610.25% SEM vs. 13.762.82% SEM, 15.563.64% SEM

and 16.364.08% SEM for the random and the fine- and coarse-

resolution ‘checkerboard’ approaches, respectively; Figure 4).

The number of predictors included in the models did not dramati-

cally affect the results, although the patterns described above were

stronger when the number of predictors increased (Supporting Informa-

tion Figure S6). The measures of SDM performance tended to increase

with the number of predictors, whatever the partitioning method or the

type of predictors. On average, AUCe and TSSe were consistently

higher than AUCp and TSSp but the more predictors that were

included, the more this difference decreased (excluding models with

only two variables whose evaluations were similarly low for both types

of predictors). Similarly, at least 11% of models were better evaluated

when computed using pseudo-predictors, but this proportion increased

with the number of predictors [around 25% (block partitioning) or 30%

(random partitioning) for models with more than 15 predictors].

4 | DISCUSSION

We have demonstrated that SDMs computed using meaningless varia-

bles as input environmental predictors are often classified as good or

even excellent according to the most widely used evaluation measures.

Worse, one third of these models led to better evaluations than those

computed from the real environmental predictors that most studies uti-

lize. This result shows that SDMs with no biological realism could easily

occur and remain undetected, and questions the current practices of the

SDM community in terms of model evaluation and variable selection.
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Although on average AUC and TSS tended to be higher for

climate-based models than for models built from pseudo-predictors, in

a large proportion of cases the latter were at least equally well eval-

uated. This implies that, either bioclimatic and topographic variables

are no better at predicting species distributions than any randomly cho-

sen set of non-biological variables, or classical evaluation metrics are

unable to identify wrong models. The first hypothesis draws upon

recent work by Bahn and Mcgill (2007), Beale et al. (2008) and

Chapman (2010) who suggested that the apparent association between

climate and species’ ranges may be equally well explained by the inher-

ent spatial autocorrelation of species distributions as by an actual bio-

logical process. In contrast to these studies, we did not attempt to

create a spatial null model to be compared to climatic models. Instead,

we used randomly selected paintings as pseudo-predictors, but in

essence, the approach is similar. Any drawing or environmental raster

exhibits autocorrelated spatial patterns that can be statistically fitted to

a dataset of species’ occurrences, especially when the number of pre-

dictors is high. Therefore, a parallel spatial autocorrelation between a

species’ presence and environmental variables can make it hard to dis-

tinguish between geographical patterns and biological processes

(Warren, Cardillo, Rosauer, & Bolnick, 2014). We note, however, that

many historical (von Humboldt & Bonpland, 1805; Wallace, 1876) and

modern (Ara�ujo & Peterson, 2012; Jim�enez-Valverde, Barve et al.,

2011; Thomas, 2010) empirical pieces of evidence demonstrate that

climate plays a primary role in shaping species’ distributions not least of

which is the range shift observed in many species in synchrony with cli-

mate change (Chen, Hill, Ohlemuller, Roy, & Thomas, 2011).

If we make the reasonable assumption that paintings are not as

good predictors of species distributions as bioclimatic and topographic

variables, then we have to question the reliability of the metrics we

used to evaluate the predictive performance of models. Previous stud-

ies have already shown that AUC cannot provide an efficient measure

of SDM performance (Jim�enez-Valverde, 2014; Lobo et al., 2008;

Smith, 2013), and especially that it does not inform about models’ bio-

logical significance (Fourcade et al., 2014; Stolar & Nielsen, 2015). The

drawbacks of AUC, as a measure to assess SDMs, have been attributed

to its dependence on the calibration area (Barve et al., 2011; Jim�enez-

Valverde, Acevedo, Barbosa, Lobo, & Real, 2013) as well as to the fact

that it ignores the spatial distribution of errors and that it relies on the

ranking of sensitivity and specificity across thresholds, ignoring the

actual probability values given by the model (Lobo et al., 2008). More-

over, AUC tends to inflate for models that have a strong fit to input

presence points, and thus favours those that estimate realized distribu-

tion while penalizing those that predict the species’ potential distribu-

tion (Jim�enez-Valverde, 2012). It also weights equally omission and

commission errors, a property that is not necessarily desirable

(Jim�enez-Valverde, 2012, 2014; Lobo et al., 2008). Threshold-

dependent statistics like sensitivity and specificity have been suggested

as valuable alternatives to evaluate the discrimination ability of models

(Jim�enez-Valverde, 2014). In this regard, our results revealed that TSS,

which is basically a recapitulation of sensitivity and specificity for a

given threshold, is similarly unable to assess the predictive value of the

input variables. Here, we were unable to calculate the true AUC and

specificity as they were based on background data instead of true

absences. Possibly, evaluation metrics based on real presence/absence

data may perform better (Jim�enez-Valverde, 2012; Smith, 2013). How-

ever, presence/background modelling has become standard as most

SDMs are trained from occurrence records only. Providing that true

absences and independent test data are available, interpreting the

entire ROC curve – or its most relevant section (Peterson, Papeş, &

a

b
b

b

a

a a

a

(a)

(b)

FIGURE 4 Mean difference (in %,6 SE) in evaluation metrics [area
under the receiver operating curve (AUC): (a); true skill statistics
(TSS): (b)] between models built from true environmental variables
or pseudo-predictors derived from paintings. Significant differences
between groups (Tukey’s post-hoc tests after repeated-measures

ANOVA) are shown by letters (see text for details). AUCp5AUC
for model computed with paintings-derived pseudo-predictors;
AUCe5AUC for model computed with real environmental varia-
bles; TSSp5TSS for model computed with paintings-derived
pseudo-predictors; TSSe5TSS for model computed with real envi-
ronmental variables
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Sober�on, 2008) – instead of summarizing it by a single value may give

more useful insights into SDM discrimination ability (Jim�enez-Valverde,

2012). However, such an ideal set-up is most often out of reach in

real-world situations, and in any case a careful examination of ROC

plots may be too complex for studies involving multiple species. Even if

evaluation statistics can inform about model fit, it is unlikely that a sin-

gle value can tell whether a SDM has any biological realism or not.

(Ara�ujo et al., 2005).

The flaws of AUC that our results suggest have been known for a

while (Lobo et al., 2008). Yet, it is still used in more than 80% of distri-

bution modelling papers published in recent years in leading biogeogra-

phy journals. More than half of SDM studies even relied on this single

measure alone to assess the performance of their models. At the same

time, the large majority of these studies included all or some of the 19

bioclimatic variables popularized by the Worldclim project (Hijmans

et al., 2005). Based on the assumption that climate must play a role in

driving species distributions, they have become a standard default pre-

dictor set in most modelling studies. Some disciplines such as palaeo-

biogeography or phylogeography have no choice but to rely on climate

models, as they are the only environmental predictors of past distribu-

tions available across geological scales. However, the importance of cli-

mate in shaping species distributions is often unevaluated and a clear

justification of this choice of variables is frequently lacking. If evalua-

tion measures fail to identify when distribution models are built from

obviously meaningless predictors, how much can we trust the many

studies that make use of SDM approaches? The answer probably

depends on the objective of the study and on the weight given to the

evaluation of model performance. Although interpretations of model

performance based on AUC or even TSS are most likely misleading, it is

probably safe to adopt a relatively relaxed selection of bioclimatic pre-

dictors when the aim is explicitly to model climatically suitable areas

and not necessarily the realized distribution of a species. Similarly, envi-

ronmental variables that are only proxies or that are spatially correlated

to direct predictors of species presence may be sufficient to approxi-

mate a species’ current distribution. However, problems arise when

models are projected in space or time. Indeed, real descriptors of the

causal factors that determine the distribution of the species are needed

when SDMs are used to hindcast palaeodistributions (Varela, Lobo, &

Hortal, 2011) or to forecast range shifts with climate change (Austin &

Van Niel, 2011). The same requirement applies to models aimed at pre-

dicting the invasive potential of species in a different area than the cali-

bration range (Petitpierre et al., 2017).

As it appears that standard evaluation metrics can hardly discrimi-

nate biologically relevant SDMs from meaningless models, the question

now is whether strategies exist that can overcome this problem. First

of all, the importance of carefully selecting predictors according to the

known ecology or physiology of the species of interest must be empha-

sized (Austin & Van Niel, 2011; Petitpierre et al., 2017; R€odder &

L€otters, 2010; R€odder et al., 2009). Involving expert knowledge in the

process of variable selection can help to identify a priori the true driv-

ers of species distribution (Murray et al., 2009). As the risks of using

strongly correlated variables have also been recognized (Braunisch

et al., 2013), many authors select variables according to their level of

intercorrelation, a safe practice from a statistical point of view but

which does not ensure the use of biologically interpretable predictors.

There is also a growing interest in adapting information theoretic

approaches inspired by procedures of model selection by AIC (Burnham

& Anderson, 2002). The idea is to compare models computed with dif-

ferent sets of predictors and to select the best model according to cri-

teria that account for model fit while penalizing overfitting (Warren &

Seifert, 2011). Although it cannot replace a careful procedure of vari-

able selection based on ecological criteria, it has been suggested that

information criteria do not suffer from the drawbacks of AUC and

might be a way to identify a set of relevant predictors for the modelled

species. Methods of variable selection by AIC (and AICc or Bayesian

Information Criterion (BIC)) have been implemented by several authors

(Verbruggen et al., 2013; Warren, Glor, & Turelli, 2010; Zeng, Low, &

Yeo, 2016) and have been proven to improve the performance of

SDMs compared with models that use unselected variable sets. How-

ever, others had pointed out before that AIC is sensitive to spatial

autocorrelation (Diniz-Filho, Rangel, & Bini, 2008). In this regard, our

results showed that, as for AUC, c. 30% of models based on pseudo-

predictors were better evaluated (lower AICc) than those based on real

environment variables.

In addition to rigorous selection of variables, inferences based on

SDMs could be improved by using an effective method of model evalu-

ation. We showed, in line with other authors (Jim�enez-Valverde, 2012;

Lobo et al., 2008), that two widely used evaluation metrics overrate

the performance of biologically meaningless SDMs. However, an essen-

tial assumption of these approaches that we did not discuss is the strict

independence between training and test records (Ara�ujo et al., 2005).

In practice, occurrences of a species can rarely meet this assumption,

especially when training and evaluation points are generated from the

same dataset via cross-validation. A general strategy to increase the

spatial independence of training and testing datasets is to split the data

into spatial blocks (Roberts et al., 2017). This type of cross-validation

implies that the spatial transferability of the model is evaluated rather

than just its interpolation accuracy (Bahn & McGill, 2013; Wenger &

Olden, 2012). It usually results in a lower evaluation of performance,

but closer to an actual estimate of model transferability (Roberts et al.,

2017). We found the same pattern in our study. The ‘block’ partitioning

method, which consisted of dividing occurrences into four geographi-

cally separated bins (Radosavljevic & Anderson, 2014), led to lower

evaluation measures for both sets of variables. Interestingly, AUCe and

AUCp were more different and less correlated when they were esti-

mated from this method compared to other partitioning strategies. We

observed a similar but non-significant pattern for TSS as well. The

coarse-resolution ‘checkerboard’ method, which also provided a certain

level of spatial independence between training and test data, tended to

show similar – although not significant – patterns. Evaluations using

these methods remain remarkably high for SDMs trained from purely

non-biological variables, and are thus potentially misleading on their

own. They also failed to identify models based on irrelevant predictors

as often as the others did. Still, these results suggest that highly unreal-

istic models tended to be penalized when their performance was eval-

uated via a spatial segregation of test and training occurrences. Our

FOURCADE ET AL. | 9



results thus confirm previous findings that it is advisable to give priority

to evaluation approaches that use spatially independent occurrences

located in a distant area from the calibration dataset (Bahn & McGill,

2013; Radosavljevic & Anderson, 2014, Roberts et al., 2017; Wenger &

Olden, 2012).

SDM workflows have too often consisted of downloading occur-

rence data from an online database and the 19 Worldclim bioclimatic

variables (Hijmans et al., 2005), and building a model using the default

settings in MAXENT (Morales, Fernandez, & Baca-Gonzalez, 2017). How-

ever, owing to the many potential issues that may arise when settings

and inputs are not adequately chosen (Merow, Smith, & Silander, 2013;

Yackulic et al., 2013), such a simplistic approach can be considered as

bad practice. Fortunately, SDM methods are not in their infancy any-

more and awareness of these problems has risen. Nevertheless, a large

proportion of studies still relies on inappropriate evaluation statistics

and fails to report a rigorous selection of environmental predictors. We

showed here that the inherent spatial autocorrelation of species distri-

butions and environmental variables, associated with the use of non-

independent test data and flawed evaluation metrics, could inflate the

apparent performance of SDMs whatever their actual biological rele-

vance. Therefore, in the absence of a robust method to evaluate the

biological significance of SDMs, it appears essential to select a relevant

set of environmental predictors, based on the known ecology or physi-

ology of the species of interest. We also encourage SDM users to eval-

uate models in light of their transferability using spatially independent

data, a crucial feature for most applications such as predicting the

potential spread of invasive species (R€odder & L€otters, 2010; Verbrug-

gen et al., 2013; Wang & Jackson, 2014) or forecasting climate-driven

range shifts (Dobrowski et al., 2011; Elith & Leathwick, 2009). In any

case, we recommend avoiding drawing strong conclusions about their

performance based on metrics such as AUC or TSS. More research is

still needed to assess the ability of different modelling algorithms to

identify truly influential predictors, to develop reliable model evaluation

measures, and to design statistical procedures of variable selection that

could complement a biologically informed choice of predictors.
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